A Study on the Application Strategies of Wind Power System in Apartment Complex
A Study on the Application Strategies of Wind Power System in Apartment Complex

이 논문은 학사 학위 논문으로 제출함

2002年 6月

中央大學教 大學院
建築學科 建築計劃 및 環境專攻
姜 笑 連
姜 笑 連의 碩士學位 論文으로 認定함

審查委員長

審查委員

審查委員

中央大學敎 大學院

2002年 6月
제목 차례

제 1 장 서 론 1
 1.1 연구의 배경 및 목적 1
 1.2 연구의 내용 및 방법 3

제 2 장 풍력발전시스템 이론적 고찰 6
 2.1 풍력발전시스템 6
 2.1.1 풍력발전시스템 개요 6
 2.1.2 풍력발전시스템 장치 6
 2.1.3 풍력발전 시스템의 분류 10
 2.2 풍력발전기술의 현황 및 전망 13
 2.2.1 해외풍력에너지동향 13
 2.2.2 국외 풍력발전시스템 운용사례 23
 2.3 국내 풍력발전의 현황 27
 2.3.1 국내 대체에너지 현황 27
 2.3.2 국내 풍력발전 동향 28
 2.4 풍력발전 기술 전망 30

제 3 장 공동주택단지의 풍력발전시스템 적용 가능성 검토 및 Process설정 32
 3.1 공동주택단지내 풍력발전시스템의 적용가능성 분석 32
 3.1.1 기후데이터분석 32
 3.1.2 공동주택단지의 풍력 발전시스템 적용가능성 분석 36
 3.2 적용가능한 SYSTEM 고찰 44
 3.2.1 상용화된 풍력발전시스템 고찰 44
 3.2.2 공동주택단지내 풍력발전시스템의 적용시 검토사항 51
 3.3 공동주택단지의 건축적 특성에 따른 풍력발전시스템의 배치계획 58
 3.3.1 입면상 배치계획 59
 3.3.2 평면상 배치계획 61
제 4 장 공동주택단지내 풍력발전시스템의 적용사례안 68
 4.1 대상분석 .. 68
 4.1.1 대상 공동주택단지의 Zoning .. 68
 4.2 기후분석을 통한 적응 풍력발전시스템 선정 .. 73
 4.2.1 기후분석을 통한 풍력발전시스템 선정 .. 73
 4.3 설계목표설정 .. 78
 4.3.1 선정공동주택단지 전력부하 예측에 따른 풍력발전시스템의 담당부하
 결정 .. 78
 4.4 풍력발전시스템의 공동주택단지내 배치계획 ... 81
 4.4.1 전력부하유형 및 풍력발전시스템의 출력특성에 따른 대수 산정 81
 4.4.2 풍력발전시스템의 선정공동주택단지내 배치계획 83
 4.5 설계목표설정안에 따른 단지내 배치안 .. 84
 4.5.1 전력담당유형에 따른 적용방안 ... 84
 4.5.2 각 Zone 별 적용안 .. 88

제 5 장 결 론 .. 92

참 고 문헌 .. 95
Wind Turbine Glossary .. 99
국문초록 .. 102
ABSTRACT ... 105
<table>
<thead>
<tr>
<th>표</th>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>표 2.1</td>
<td>국가별 세계 풍력발전기 보급동향 및 향후목표</td>
<td>14</td>
</tr>
<tr>
<td>표 2.2</td>
<td>각 풍력발전시스템 적용사례</td>
<td>26</td>
</tr>
<tr>
<td>표 2.3</td>
<td>대체에너지원별 공급현황</td>
<td>28</td>
</tr>
<tr>
<td>표 2.4</td>
<td>국내의 풍력발전기 이용현황</td>
<td>29</td>
</tr>
<tr>
<td>표 2.5</td>
<td>국내 대체에너지원 보급계획</td>
<td>31</td>
</tr>
<tr>
<td>표 3.1</td>
<td>서울지역 측후소의 위치</td>
<td>33</td>
</tr>
<tr>
<td>표 3.2</td>
<td>풍량별 풍속단계별 민도분석</td>
<td>35</td>
</tr>
<tr>
<td>표 3.3</td>
<td>Friction Coefficient of Various Terrain</td>
<td>38</td>
</tr>
<tr>
<td>표 3.4</td>
<td>각 주동벌 분석결과</td>
<td>39</td>
</tr>
<tr>
<td>표 3.5</td>
<td>Classes of Wind Power Density(10m,50m)</td>
<td>41</td>
</tr>
<tr>
<td>표 3.6</td>
<td>5층형주동 원별 풍력에너지밀도</td>
<td>42</td>
</tr>
<tr>
<td>표 3.7</td>
<td>15층형주동 원별 풍력에너지밀도</td>
<td>43</td>
</tr>
<tr>
<td>표 3.8</td>
<td>25층형주동 원별 풍력에너지밀도</td>
<td>43</td>
</tr>
<tr>
<td>표 3.9</td>
<td>중소형 풍력발전시스템 사양의 예</td>
<td>48</td>
</tr>
<tr>
<td>표 3.10</td>
<td>Bergey 사 10kW급 풍력발전시스템의 소음특성</td>
<td>53</td>
</tr>
<tr>
<td>표 3.11</td>
<td>환경소음 진동기준</td>
<td>53</td>
</tr>
<tr>
<td>표 3.12</td>
<td>생활소음진동 규제기준</td>
<td>55</td>
</tr>
<tr>
<td>표 3.13</td>
<td>공동주택단지내 소음기준</td>
<td>55</td>
</tr>
<tr>
<td>표 3.14</td>
<td>건축물의 구조기준 등에 관한 규칙</td>
<td>57</td>
</tr>
<tr>
<td>표 3.15</td>
<td>편복도형의 단위세대조합수에 따른 적정 Hub 높이</td>
<td>61</td>
</tr>
<tr>
<td>표 3.16</td>
<td>주동충수별 인동거리와 로터지름의 상관관계(예배치계획시)</td>
<td>63</td>
</tr>
<tr>
<td>표 3.17</td>
<td>주동충수별 인동거리와 로터지름의 상관관계(평행배치계획시)</td>
<td>64</td>
</tr>
<tr>
<td>표 4.1</td>
<td>선정공동주택단지의 설계개요</td>
<td>70</td>
</tr>
<tr>
<td>표 4.2</td>
<td>5층형주동의 선정시스템 사양</td>
<td>74</td>
</tr>
<tr>
<td>표 4.3</td>
<td>15층형주동의 선정시스템 사양</td>
<td>75</td>
</tr>
<tr>
<td>표 4.4</td>
<td>25층형주동의 선정시스템 사양</td>
<td>76</td>
</tr>
<tr>
<td>표 4.5</td>
<td>공동주택 유형별 시스템설정에 따른 발전전력량(kWh)</td>
<td>78</td>
</tr>
</tbody>
</table>
<표 4.6> 각 Zone 별 외동전력부하분석 ... 79
<표 4.7> 각 Zone 별 계단동·비상동 전력부하분석 .. 80
<표 4.8> 각 Zone 별 지하주차장 조명부하분석 .. 81
<표 4.9> 외동전력부하 담당위한 시스템 소요대수 산출 81
<표 4.10> 계단실동, 비상유도등의 전력부하 담당위한 시스템 소요대수산출 82
<표 4.11> 지하주차장 조명 전력부하 담당위한 시스템 소요대수 산출 83
<표 4.12> 선정공동주택단지의 Zone 별 적정 Hub 높이산출 84
<그림 차례>

(그림 1.1) 연구흐름도 .. 5
(그림 2.1) 농항유도발전기(AC/AC링크방식) .. 8
(그림 2.2) 전선형유도발전기(AC/AC링크방식) .. 9
(그림 2.3) 일반 전선형 또는 영구자석 동기발전기(AC/DC/AC링크방식) 10
(그림 2.4) 수평축, 수직축 풍력발전기 개연도 .. 11
(그림 2.5) 계통연계 운전형 .. 11
(그림 2.6) 독립 운전형 .. 12
(그림 2.7) 풍력발전기 세계 보급규모 및 전망 .. 14
(그림 2.8) 덴마크내 설치 풍력발전시스템 평균 정격용량 ... 16
(그림 2.9) 독일내 신규설치된 풍력발전시스템의 용량비율변화 ... 17
(그림 2.10) 연도별 풍력발전기 평균설치용량 ... 18
(그림 2.11) 상용 풍력발전시스템크기별 비출력 ... 19
(그림 2.12) 풍력발전기 용량증가에 대한 .. 20
(그림 2.13) 풍력발전시스템 단가변화 .. 21
(그림 2.14) 풍력발전기 크기증가에 대한 기준소음 변화 ... 22
(그림 3.1) 월별풍속변화 .. 34
(그림 3.2) 풍배도 .. 34
(그림 3.3) 월별풍속변화 .. 38
(그림 3.4) 각 종별 풍력에너지밀도 ... 42
(그림 3.5) 소형풍력발전기의 출력곡선비교 .. 46
(그림 3.6) 난지도생태공원의 25kW급 풍력발전기 ... 50
(그림 3.7) 적유면체 건물주위의 기류형상 .. 59
(그림 3.8) 국민주택규모의 전면 3실형 산출평면 ... 60
(그림 3.9) 공통주택단지의 풍력발전시스템 설계 Process .. 65
(그림 4.1) 선정 공동주택단지의 현황분석 ..69
(그림 4.2) 선정 공동주택단지의 부지현황 ..69
(그림 4.3) 선정 공동주택단지 전체 배치도 ..71
(그림 4.4) 선정 공동주택단지의 영역설정 ..72
(그림 4.5) 5층형 평소인도분석결과 ...74
(그림 4.6) 15층형 평소인도분석결과 ...75
(그림 4.7) 25층형 평소인도분석결과 ...76
(그림 4.8) 각 시스템별 월별 출력량(kWh) ...77
(그림 4.9) 탑당전력부하에 따른 적용 시스템도 ...85
(그림 4.10) 외부 탑당 배치계획 ...86
(그림 4.11) 계단등, 비상유도등 탑당 배치계획안87
(그림 4.12) 지하주차장 배치계획 ...88
(그림 4.13) Zone 1의 전체배치와 경관 ...88
(그림 4.14) Zone 1의 입력형상 ...89
(그림 4.15) Zone1 설치예 ...89
(그림 4.16) Zone 2의 전체입면 ...89
(그림 4.17) Zone 2의 입력형상 ...90
(그림 4.18) zone2 설치예 ...90
(그림 4.19) Zone 3의 전체배치와 경관 ...90
(그림 4.20) Zone의 입력형상 ...91
(그림 4.21) zone3 설치예 ...91
제 1 장 서 론

가. 연구의 배경 및 목적

에너지의 필요성과 채생으로 채체가 치명적인 문제로, 에너지의 수급을 조절하는 방법에는 에너지의 효율성과 채생의 케일의 수급이 또한 여러 가지 방법이 있겠으나 가장 적극적인 대책은 에너지의 수급의 전환인 전환가능한 에너지원으로서의 개발이란 수 있다. 따라서 선진국들은 이미 1960년대부터 재생가능한 에너지의 개발을 서둘러 왔고 정부차원의 지속적인 지원과 장려책을 펼치고 있다.

현재 세계적으로 활용되는 재생에너지는 태양광발전, 태양열, 풍력에너지, 바이오매스, 조류발전, 지열 등 총 11개 분야가 있다. 이 중에서 풍력에너지는 어느 곳이라도 산재되어있는 무공해, 무환경의 바람을 이용하므로 환경에 미치는 영향이 거의 없고 국토를 효율적으로 이용할 수 있으며, 기존의 화석연료와 대등한 가격 경쟁체제로의 진입가능성이 높은 에너지원 평가받고 있다.

특히 풍력에너지원의 진력을 생산하는 풍력발전기술은 이미 발전과 발전기기술 개발보다는 풍력발전기의 저가화와 대형화 및 보급확대에 치중하여 많은 국

1) 김두훈, "한국의 풍력발전 현황 및 전망", 국회환경정책연구회 정책심포지엄, 에너지시스템 진환과 재생가능에너지, 2002.2, pp.14
가에서 경제적으로 풍력발전기를 보급하고 있다. 우리나라에서는 전국 64개 기상청
산하 기상관측소의 통계자료와 도서 및 내륙 일부지역의 측정자료를 이용한 풍
력자원특성분석이 이루어졌으나 지역적 조건에 크게 영향을 받는 풍력자원의
특성 때문에 아직 기초통계자료의 정비가 미흡한 실정이며, 기술개발 또한 아직
초보적인 수준이라 할 수 있다.

이처럼 풍력발전기의 대형화와 풍력단지의 건설에만 초점을 맞추어져 있었으
나 대규모 발전단지는 비록 재생에너지일지라도 많은 문제점을 갖고 있다. 철판들
의 제작음이나 살각한 소음 때문에 주거지역에서 떨어진 지역에 건설하기 위해 보존
된 자연을 파괴하게 된다. 또 충전설로건설로 인한 전력누수와 환경문제 역시 매우
심각하다 할 수 있다. 반면 소형풍력발전기는 전력사용지역에서 자체적으로 전
력을 생산하므로 반영구적으로 에너지를 사용함과 동시에 환경문제를 전혀 일으
키지 않는다.

최근 유럽이나 미국등에서는 건물에서 적용가능한 소형풍력발전시스템의 보급
이 크게 각광을 받고 있다. 그러나 우리나라의 경우에는 여러 가지 기술적, 환경적
문제와 안전상의 문제 뿐만 아니라 특히 적정수준의 바람을 확보하기 어려기
때문에 건물에서의 풍력발전적용은 전혀 시도되지 못하고 있다. 그러나, 최근 고
층의 대규모 공동주택단지 건설이 활발해지고 있는 상황에서 재생가능에너지활
용이라는 축면을 감안할 때, 이러한 풍력발전시스템이 우리나라 에너지소비의
30%이상을 차지하고 있는 건축물에 적용되었을때 그 효율성이 클것으로 예상되
어, 공동주택단지내 풍력발전시스템의 적응방안에 관한 연구의 필요성이 절실하
다 할 수 있다.

따라서 본 연구에서는 우리나라 주거용 건물의 파반수이상을 차지하고 있고,
다수의 단위세대로 구성된 아파트가 단지를 이루는 대규모 집합주거인 공동주택
단지에서 풍력발전시스템의 적용가능성과 활용방안을 제시해보고자 한다.
나. 연구의 내용 및 방법

본 연구에서는 먼저 현재 적용되고 있는 풍력에너지시스템에 대한 기본개념과 이론 및 국내외 풍력에너지시스템의 기술개발과 보급현황을 문헌을 통해 고찰하였다. 또한 우리나라의 기후분석을 통해 공동주택 주동의 높이변화에 따른 풍속과 풍력에너지밀도의 변화를 분석하여 풍력에너지를시스템의 작용가능성을 검토하였다. 이를 바탕으로 공동주택단지에서 활용할 수 있는 시스템을 선정하여 공급가능한 전력량 및 담당비용을 분석해보고 건물에 적용시의 검토사항을 고찰하여 공동주택단지내 풍력발전시스템의 설계 Process를 제시하였다. 이를 실제 공동주택단지에 적용하는 사례분석을 통하여 설계 Process를 검증하였다.

본 연구의 내용 및 방법을 요약하면 다음과 같다.

(1) 풍력에너지시스템에 대한 기본개념과 이론 및 국내외 기술개발과 보급현황에 대한 기존 문헌고찰

풍력에너지시스템에 대한 기본개념과 시스템이론 및 국내외 풍력에너지시스템의 기술개발과 보급현황을 문헌을 통해 고찰하였다.

(2) 우리나라 기후분석을 통한 풍력발전시스템 적응가능성 분석

우리나라의 기상청 측정자료를 기초로 건물높이에 따른 유형분류에 따라 풍속 보장을 실시하여 풍속과 풍력에너지밀도변화를 분석하여 공동주택단지내 풍력발전시스템의 적응가능성을 분석하였다.

(3) 공동주택 단지 특성에 따른 풍력발전시스템 적응가능성 분석과 적정시스템 제안, 풍력발전시스템 설치시 검토사항 고찰

높이에 따른 유형분류에 따라 적응가능한 풍력발전시스템을 고찰하여 공동주택단지내 주동의 건축적 특성에 따른 풍력발전시스템을 제안하고, 건물에 풍력발전시스템을 설치시 검토사항에 대하여 고찰하였다. 이를 공동주택내 적용시 주동
의 건축적 특성에 따른 풍력발전시스템의 배치계획 방법을 고찰하였다.

(4) 분석결과를 바탕으로 공동주택단지내 풍력발전시스템 설계 Process를 제시하고 이를 실제 공동주택 단지의 사례분석을 통해 평가

분석결과를 토대로 공동주택단지내 풍력발전시스템의 설계 Process를 제시하고 최근 설계된 공동주택단지에 적용하여 사례분석을 실시하여 설계 Process를 검증하였다.

이상의 연구 내용 및 방법에 대한 흐름도는 (그림 1.1)과 같다.
서론

풍력발전시스템 이론적 고찰

풍력발전시스템 개요
풍력발전시스템 장치상의
풍력발전시스템의 분류

국내외
풍력발전시스템의 동향

국외동향
국내동향

 공동주택단지내 풍력발전시스템 적용가능성 검토 및 Process 제시

기후분석 통한 풍력발전시스템의 적용가능성 분석
 적용가능한 풍력발전시스템 고찰
 공동주택단지내 풍력발전시스템의 적용시 검토사항(건물에 의한 기류변화, 시스템)
 설계 Process 제시

 공동주택단지내 풍력발전시스템의
적용사례발

 Process에 따른 계획안 도출
 계획안 평가

결론

(그림 1.1) 연구흐름도
제 2장 풍력발전시스템 이론적 고찰

2.1 풍력발전시스템

2.1.1 풍력발전시스템 개요

풍력발전은 공기의 유동이 가진 운동에너지의 공기역학적(aerodynamic)특성을 이용하여 회전(rotor)을 회전시켜 기계적 에너지로 변환시키고 이 기계적 에너지를 전기를 얻는 기술이다. 풍력발전기는 지면에 대한 회전축의 방향에 따라 수평형 및 수직형으로 분류되고, 주요 구성요소로는 날개(blade)와 허브(hub)로 구성된 회전자와 회전을 중속하여 발전기를 구동시키는 중속장치(gear box), 발전기 및 각종 안전장치를 제어하는 제어장치, 유압 브레이크장치 및 전력제어장치 및 철탑(tower)로 구성된다.

2.1.2 풍력발전시스템 장치

풍력발전의 구성은 블레이드(blade), 요구동장치 등의 기계장치 및 발전기로 구성되는 풍력발전기, 역변환장치, 제어장치는 기계적 제어장치(회차각제어, 요각 제어, 브레이크제어)와 역변환장치의 제어, 발전장치와 계통연계를 위한 연계보호설비로 설명할 수 있다.2)

① 풍력발전기: 기계장치, 발전기
② 역변환장치: 직접연계장치, 전력변환장치
③ 제어장치: 발전기제어장치, 역변환 제어장치
④ 연계보호장치: 보호계전장치, 차단기, 개폐기

2) 정진영, 대체에너지 기술개발 현황 및 발전비용에 관한 연구, 창원대 석사논문, 2000.6, pp.17-19
(1) 기계장치

① 블레이드(blade, 날개)

풍력발전의 회전력을 얻는 부분으로서 2매 및 3매 방식이 있다. 3매방식은 2매
방식에 비해 연간 발전량이 수%정도 유리하며, 진동특성의 면에서도 유리하다. 2
매방식은 날개를 수평으로 유지할 수 있기 때문에 바람의 방향에 관계없이, 유속
flatter의 위험성을 적게 할 수 있어 강풍시 날개에 걸리는 하중을 적게 할 수 있
다. 따라서 나셀 및 타워의 경량화를 완료할 수 있다.

② 로터(rotor)

날개를 회전축에 붙이기 위한 하브 및 날개피치각의 가변구조로 구성되어 있
다. 로터는 바람으로부터 에너지를 흡수함과 동시에 시스템의 안정성을 확보하는
중요한 요소이다.

③ 나셀 유니트

풍력에 의해 언어진 로터의 회전에너지의 전기로 변환하는데 필요한 장치와
변동하는 풍향 및 풍속에 대한 제어구동장치를 결합한 부분이다. 가변피치각구동
장치, 요구동장치, 브레이크, 발전기 등으로 구성된다.

④ 가변 피치각 구동장치

기동 풍속이상시 로터의 기동도오크를 충분히 얻기위한 기동운전, 정격풍속이
상에서의 정격출력을 일정히 하기 위한 정격운전 및 강풍속(cut-out 풍속이상)시
또는 저풍속(cut-in 풍속)시의 정지등에 날개의 피치각을 적절히 변화시켜 로터
의 회전수 및 출력을 제어하는 장치이다. 가변피치구동장치는 변동이 심한 하중
조건을 이겨낼 필요가 있으며, 또한 한랭지에서의 사용조건을 고려해 로터주축실
내에 가변피치구동용 유압실린더와 회전기수(回轉転手) 등을 갖는다. 나셀내에
설치된 유압유니트에 의해 구동되는 쪽이 안전하며 저렴하다.

⑤ 요구동장치

프로펠러형 풍차의 경우, 끝임없이 변동하는 풍향에 대해서 효율좋게 에너지를
얻기위해 날개를 풍향에 정면으로 할 필요가 있다. 이 때문에 요제어는 날개의
강도 및 진동측면에서도 대단히 중요하다.

⑥ 브레이크
강풍시 및 이상시 또는 보수점검시 로터를 정지시키기 위해 필요한 장치이다. 로터를 정지시킬 경우, 날개를 가변피치구동장치에 의해 움직여서 로터를 충분히 감속 내지는 정지시킨 후에 브레이크를 동작시키도록 하면 소형화가 가능하다.

⑦ 발전기
풍속에 의해 회전에너지를 전기에너지로 변환하는 장치로서 동기발전기와 유도발전기가 있다. 일반적으로 발전기는 속성을 개입시키며 속차에 직결되어 나설내에 설치된다.

⑧ 타워
타워는 트레스식과 모노포울식의 2종류가 있다. 모노포울방식은 트레스식에 비해서 경량이고 제작이 용이하며, 현지조립도 단시간내로 가능하다.

(2) 발전기
풍력발전을 위하여 사용되는 발전기는 농형 유도발전기, 권선형 유도발전기, 일반 권선형 동기발전기, 영구자석형 동기발전기가 있다.
① 농형 유도발전기
풍력발전에 가장 많이 사용되는 발전기로 계통과 직접 연계가 가능하고, 구조가 간단하고, 가격이 저렴하며 유지보수비용이 적다.

(그림 2.1) 농형유도발전기(AC/AC링크방식)

② 권선형 유도발전기
가변속 정주파수 운전특성을 가지고 있어 계통과 직접연계가 가능하고, 회전자
여로를 통한 여자제어로 운전영역의 확장이 가능하다. 발전기자체의 한정된 출력비(출력/무게: KW/kg) 때문에 부피가 크고, 기어가 필요하기 때문에 발전기 지지대 등 튼튼한 하부구조가 필요하다.

(그림 2.2) 권선형유도발전기(AC/AC링크방식)

③ 일반 권선형 동기발전기: 가변속 정전압 운전이 가능하고, 전력변환장치에 의한 정전압 정주파수 변환이 가능하므로 터빈선택의 폭이 넓은 편이다. 다극기 제작에 의한 기어없는 형태의 발전기가 가능하고, 높은 효율과 역율을 나타내고 있다.

④ 영구자석여자 동기발전기
가변속 운전영역을 가지고, 전력변환장치에 의한 연계가 되며 특징으로 높은 효율, 높은 출력밀도, 소형 경량화, 유지보수비용이 적은 장점이 있다. 단점으로 가격이 너무 고가이며, 대용량 기기의 상용화가 미흡하다.
2.1.3 풍력발전 시스템의 분류

(1) 회전자 축의 방향에 의한 분류

가. 수직축 풍력발전시스템(Vertical Axis Wind Turbine)
회전자축이 지면에 대해 수직으로 회전하는 것으로 바람의 방향에 관계없이 운전되는 특징이 있으므로 바람 추적장치가 필요없이 구조가 간단하고 시스템 가격이 저렴하다. 미국 등의 몇몇 회사가 개발을 지속 중에 있으나 대형화에 실패하여 상용화된 대용량 시스템은 없으며 주로 소용량으로 운전된다.

나. 수평축 풍력발전 시스템(Horizontal Axis Wind Turbine)
회전자축이 지면에 대해 수평으로 회전하는 것으로 바람에너지를 최대로 받기 위한 바람추적장치 등이 필요하여 시스템 구성이 다소 복잡하나 지속적인 기술 개발로 현재 가장 안정적인 고효율 풍력발전 시스템으로 인정받고 있다. 현재 세계 시장에 풍력발전기의 대부분을 차지하고 있으며, 지속적인 기술개발로 보급 잠재력이 가장 큰 시스템이다. (그림 2.3)은 수평축, 수직축 풍력발전기의 개념도를 나타낸 것이다.

4) www.eia.doe.gov/cneaf/solar.renewables/renewable.energy.annual/backgrnd/fig22.gif
(2) 운전형태에 의한 분류

가. 계통연계 운전형
기존의 사용 전력계통과 병렬로 연결하여 운전되는 형태로 시스템의 대형화 및 단지화가 가능해지면서 기존 발전방식을 대체하는 신개념 발전방식으로 인정 받고 있다. 현재 전세계적으로 13,000MW정도 시설용량의 풍력발전기가 도입되어 운전되고 있다.

(그림 2.5) 계통연계 운전형

나. 독립운전형(Stand alone)

기존 상용전력선이 없는 산간, 낙도, 오지 등에서 전력사용을 목적으로 하는 경우에 채용되는 운전 형태로 양을 전력을 저장하는 충전기(Battery)가 필요하다. 일반적으로 태양광 발전, 디젤발전기 등과 병렬로 구성된 복합발전의 형태로 운전된다.

(그림 2.6) 독립 운전형

(3) 출력용량에 의한 분류

풍력발전기는 로터지름과 정격출력에 따라 다양한 시스템이 상용화되어있다. 터빈의 정격출력은 주로 블레이드길이와 로터를 지나는 공속에 따라 다르다. 예를 들면, 10kW급 발전기는 보통 로터지름이 7m정도이며 750kW급은 44m, 1.5MW급은 70m정도의 로터지름을 갖는다. 현재 풍력발전기는 보통 250w급에서 1.65M급까지 다양한 용량이 생산되고 있다.

풍력발전기는 정격출력에 따라 다음과 같이 나뉜다.
가. 소형풍력발전시스템(10kW급이하)

주택, 농장 등에서 양수나 소규모전력공급에 사용되며 독립식이 많다.
나. 중형풍력발전시스템(10~250kW급)

village 전력공급하며, 주로 계통연계되어 사용된다.
다. 대형풍력발전시스템(250kW~2MW급)

대규모 풍력발전단지로 건설되어 전력분배시스템으로 활용된다.
2.2 풍력발전기술의 현황 및 전망

70년대와 80년대의 에너지파동을 거치면서 태 국가들에 비해 대체에너지의 필요성을 먼저 인식한 국가들은 정부차원의 지원과 장려책을 수립하여 현재 환경친화적이고 저속가능한 에너지의 확보는 물론, 세계 대체에너지 산업의 선두권을 형성하고 미래산업의 주역으로 육성하고 있다.

이러한 대체에너지중 풍력에너지지는 바람의 속도와 방향이 자주 바뀌고 지속적이지 못한 경우도 있어 동력원으로서의 전환이 많은 기술들이 요구되어 생산가격이 상대적으로 높다는 단점이 지적되기도 하나, 최근 중대형급 (250KW급이상) 수평축 발전기의 개발로 효율을 높이고, 풍력발전기의 단지화에 의한 대량생산과 대규모 단지의 조성등으로 점차 생산단가가 낮아지고 있는 현상이다. 더구나 구미 선진국에서는 경제성이 있는 수평축 대형풍력발전기 (300KW, 500KW, 1MW급이상) 개발에 총력을 기울이고 있으며, 이미 상용화 단계까지 기술개발이 축적되어 왔고, 국가적인 지원 정책도 활발히 진행되고 있는 실정이다. 이들 이러한 선진국들의 보급동향과 지원정책을 문헌을 통해 고찰해보았다.

2.2.1 해외풍력에너지동향

세계각국은 자국의 여건에 맞는 지원육성 프로그램을 수립하여 풍력산업의 발전을 주도하기 위한 투자를 강화하고 있다. BTM Consults의 보고에 의하면, 2000년 12월마 현재 세계 45개 국가에 보급된 풍력발전기 규모는 총 17,706MW로, 우리나라의 전체 발전설비규모(1999년) 51,587MW의 30%를 초과하는 규모이다. 특히 유럽국가들이 90년대 후반부터 원자력발전의 증설을 중지하면서부터 풍력발전기 이용보급은 비약적으로 성장하여, 연평균 30%가 넘는 성장률을 보이고 있으며, 세계 풍력발전기 보급규모는 2004년에 47,512MW, 2009년에는 130,000MW에 이를것으로 전망되고 있으며, 1999년 약 38억불이었던 세계시장의

6) 손충열, 국내외 풍력발전기의 기술개발 및 보급현황, 재생가능에너지 제 2차 위크샵, 2002.2, pp.23
규모는 2004년에 280억불에 이르렀 것으로 전망되고 있다. 7)

![Global Wind Power Status](image)

(그림 2.7) 풍력발전기 세계 보급규모 및 전망

<표 2.1> 국가별 세계 풍력발전기 보급동향 및 향후목표 (단위 : MW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>독일</td>
<td>1,132</td>
<td>1,552 (37.1%)</td>
<td>2,081 (34.1%)</td>
<td>2,874 (38.1%)</td>
<td>4,445 (54.7%)</td>
<td>6,113 (37.5%)</td>
<td>16,000~22,000</td>
<td></td>
</tr>
<tr>
<td>덴마크</td>
<td>637</td>
<td>835 (31.1%)</td>
<td>1,116 (33.6%)</td>
<td>1,420 (27.2%)</td>
<td>1,742 (22.7%)</td>
<td>2,297 (31.9%)</td>
<td>3,500~5,000</td>
<td></td>
</tr>
<tr>
<td>스페인</td>
<td>133</td>
<td>250 (87.9%)</td>
<td>512 (105%)</td>
<td>880 (71.9%)</td>
<td>1,530 (73.9%)</td>
<td>2,402 (57.0%)</td>
<td>9,000~15,000</td>
<td></td>
</tr>
<tr>
<td>네덜란드</td>
<td>249</td>
<td>295 (2.4%)</td>
<td>329 (11.5%)</td>
<td>379 (15.2%)</td>
<td>410 (8.2%)</td>
<td>448 (9.3%)</td>
<td>1,500~2,500</td>
<td></td>
</tr>
<tr>
<td>영국</td>
<td>200</td>
<td>273 (36.5%)</td>
<td>328 (20.1%)</td>
<td>338 (3.0%)</td>
<td>356 (5.3%)</td>
<td>409 (14.9%)</td>
<td>2,000~2,600</td>
<td></td>
</tr>
<tr>
<td>미국</td>
<td>1,614</td>
<td>1,615 (0.06%)</td>
<td>1,611 (-0.2%)</td>
<td>2,141 (32.9%)</td>
<td>2,492 (16.4%)</td>
<td>2,555 (2.5%)</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>인도</td>
<td>576</td>
<td>820 (42.3%)</td>
<td>940 (14.6%)</td>
<td>992 (5.5%)</td>
<td>1,095 (10.4%)</td>
<td>1,220 (11.4%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>중국</td>
<td>44</td>
<td>79 (80.0%)</td>
<td>146 (84.8%)</td>
<td>200 (37.0%)</td>
<td>182 (-9.0%)</td>
<td>340 (86.8%)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>일본</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41</td>
<td>68 (65.9%)</td>
<td>150 (103%)</td>
<td>300</td>
<td></td>
</tr>
</tbody>
</table>

※ 주 1. () 안의 숫자는 전년도 대비 증가율
2. 1995년부터 1998년 국가별 보급량은 Wind Force 10의 자료

7) 김두훈. 한국의 풍력발전 현황 및 전망. 국외환경경제연구회정책실포지엄-에너지시스템전환과제

생가능에너지, 2002.2, pp.20
3. 1999년 및 2000년 보급량은 WindPower Monthly 자료
4. 유럽국가의 2010년 목표는 EWEA 15개 회원국의 2010년 총 40/60GW 보급 목표에 의해 설정된 지역별 분포
5. 미국, 일본은 국가 풍력발전기 보급목표

1990년대 이후의 국외 풍력발전기술의 동향은 제도연계형 풍력발전단지 조성
이 활발해 점에 따라 시스템의 대형화, 구조의 단순화를 통한 생산원가의 하락과
해양풍력발전 단지 개발이라는 경향을 보이고 있다. 본 절에서는 풍력기술의 선
진국인 덴마크와 독일의 기술을 중심으로 하여 현재 풍력기술의 개발 현황과 발
전 방향에 대해 언급코자 한다.

(1) 주요국 기술개발의 역사

가. 덴마크

덴마크에서도 우리나라와 비슷한 시기에 1970년대 후반부터 기술개발에 착수
하여 약 20여년이 지난 현재까지 획기적인 기술개발 성과를 거두고 있다. 첫 번
째 기술개발 단계인 1978년부터 1981년경 까지는 5m 길이의 회전자로서 직경 10
- 11m의 22kW나 30kW 풍력발전기를 개발, 보급하기 시작하여, 현재 기술개발
7단계에는 유럽 WEGA R&D 프로그램의 결과로서 MW급의 풍력발전시스템 개
발에 주력하여, 회전자 직경 54-66m의 1000kW와 1,650kW사이의 대형 시스템이
개발되어 시험용 풍력시스템이 덴마크 전력회사에 의해 건설되었고, 향후 2MW
정도까지의 크기로 개발되게 된다. 이러한 오늘날의 덴마크 풍력기술은 하루에
완성된 것이 아니라 지속적이며 장기적인 연구개발의 노력의 일환으로서 개발되
어 온 것이라 할 수 있다.

(그림 2.7) 에는 80년대 초반에만 해도 평균 정격용량이 50kW 내외이었으나,
1997년도에 들어 거의 600kW에 이르고 있어 빠르게 대형화의 방향으로 기술개
발이 촉진되고 있음을 보이고 있다.8)

8) 산업자원부, 풍력발전단지 건설 타당성 분석 연구, 1999, pp.24-25.
나. 독일

독일의 경우도 덴마크와 매우 유사하게 매우 점차적으로 여러 가지의 기술개발 단계를 거쳐 점차 대형화 기술을 개발하고 있다. 1974년도부터 1988년도까지 독일은 풍력발전시스템의 연구개발에 3억DM을 쏟아 부었고, 대규모의 보급계획을 추진하여 현재 세계에서 풍력시스템을 가장 많이 운전하고 있는 상황으로 발전하였다.

다음의 (그림 2.8)에 독일내에 새로 설치된 풍력시스템 단일기당 정격출력의 변화를 보이고 있는데, 9) 1998년도 상반기에만 이미 706.2kW를 기록하여 작년대비 12.3%의 증가를 보이고 있을 정도로 빠르게 대형화가 진행중에 있음을 보이고 있다.

9) op. cit. pp.25-26.
(2) 풍력발전기의 대형화

블레이드 제작기술과 타워 구조물 제작 기술 등 관련 기술이 발달함에 따라 미국과 유럽을 중심으로 로터 직경과 허브 높이가 60~90m에 달하는 정격용량 1,000~3,000kW의 메가وات급 풍력발전기들이 개발되고 상용화되고 있다. 1992년 한해동안 독일에 설치된 풍력발전기 1기의 평균 용량은 200kW 미만이었던 것이 1995년에는 두 배 이상이 컷진 450kW를 기록했고, 1999년에는 919kW, 2000년 상반기에는 1,071kW에 이르고 있으며, 2001년 현재는 2MW급 풍력발전기모델이 상용화되어 공급중이며 3~4.5MW에 이르는 초대형 풍력발전기 (Multi-Megawatt wind turbine)의 상업화가 눈앞에 와 있는 실정이다.

이러한 풍력발전기 대형화의 임지는 첫째가 단위용량 당 건설비 및 설비비의 감소이며 둘째는 대형화에 따른 에너지효율의 증가를 들 수 있다. 특히 대형 풍력발전기의 출력증가는 로터 직경의 2승이 아니라 2.35승에 비례해 증가하게 되는데 이는 타워의 높이 상승에 따른 평균풍속의 증가로 용량 및 이용율이 증가하기 때문이다. 이런 대형화를 통해 풍력발전의 단가는 2004년에 4cents/kwh, 2010년에는 2.5cents/ kwh로 낮아질 전망이다. 10)

10) 손충열, 국내외 풍력발전기의 기술개발 및 보급현황, 재생가능에너지 제2차워크샵, pp.24
또한 풍력발전시스템의 대형화와 아울러 기술개발의 핵심지표로서 풍력발전시스템 전력생산성을 끌 수 있다. 즉, 단위 헤이타면적당 연간 발전량의 비교는 기술력을 직접적으로 대변하는 주요한 요소로서, 이에 대해 덴마크 및 독일의 생산성을 살펴보고자 한다.

풍력발전시스템의 생산성은 결정하는 요소로는 풍력발전시스템 자체 기술의 진보로 인한 변환효율의 향상 및 가동률의 증가, 요소기술의 신뢰도 향상으로 인한 이용률의 증가 및 이로 인한 유지보수 기회 및 시간의 단축과 대형화를 통해 높아지고 있는 지지철탑 및 정확한 풍력자원 측정 및 단지 발굴 기술개발에 기인한 것으로 볼 수 있다.

이 생산성은 풍력기술 개발의 정도를 표시하는 직접적인 지표로서 1980년대 초반 500kWh/m2 수준에서 1990년대 말 현재 1,000kWh/m2 수준으로 향상되어 있다.
위의 (그림 2.11)는 연평균 풍속이 6m/sec일 경우 상용 풍력발전시스템의 허브 높이에 대한 비출력(생산성)의 변화를 보이고 있다. 허브 높이가 높음수록 즉, 풍력발전시스템의 용량이 커질수록 단위 회전면적당 생산력의 양이 증가하고 있어 풍력기술의 발달을 확연히 보여주고 있다.

(3) 시스템 가격 및 경제성

90년대 초반의 중형급(150-225kW급) 풍력발전시스템의 가격에 비해 현재 600kW급 풍력발전시스템의 가격은 단위 kW당 약 20%정도가 저렴해졌고, 기타 풍력발전 단지의 조성과 관련한 건설비(기초, 계통연계 설비, 도로, 프로젝트 지원등)들은 약 50%정도 하향되었다. 따라서, 풍력발전단가도 약 30%정도 줄어들었는데, 이는 기술개발 및 대형화와 시장 규모의 확대를 통한 제작기술의 발달에 기인한 것으로 판단되고 있다.

다음의 (그림 2.12)에는 통계적으로 분석된 풍력발전시스템 용량별 풍력발전 시스템 공장도 가격 및 건설비의 변화를 보이고 있는데,\(^\text{11})\) 용량이 커지면서 단위 kW당 건설비용이 현저히 줄어들고 있음을 보이고 있다.

\(^\text{11})\) 산업자원부, 풍력발전단지 건설 타당성 분석 연구, 1999, pp.29.
이렇게 풍력발전시스템의 대형화는 건설단가의 감소를 유발하였고, 계속적인 기술의 발전으로 가동률의 증가와 신뢰도의 향상으로 인한 운영유지비용의 절감 등으로 풍력발전시스템의 발전단가는 확실적으로 낮아지고 있다. 통계적으로 풍력발전시스템 또는 단지는 풍력발전시스템 가격의 약 20-30%정도가 기초공사 및 계통연계 설비 등의 부대비용으로 이용되며, 풍력발전시스템의 운전기간중 운영유지비는 주로 유지관리 계약비용, 소모품 교체, 보험 및 부지 임대료 등으로 구성되는데, 독일의 경우에는 풍력시스템 공장도 가격의 약 4%정도가 소요되는 것으로 평가되고 있다. 따라서, 건설단가의 감소 및 신뢰도의 향상으로 인한 발전량의 증대와 운영유지 비용의 저감 등으로 인해 풍력발전시스템 수명을 20년, 5%의 환연율을 적용시 특정 풍속특성(C=5.6m/sec, K=1.74)하에서의 발전단가를 (그림 2.13)에서 보이고 있다.12) 역시, 앞서의 생산성의 증가에 비례하여 기술개발과 대형화가 이루어지면서 풍력 발전단가가 횡기적으로 감소(4-5센트/kWh)하고 있음을 알 수 있다.

12) op. cit., pp29-30.
그러나, 역시 풍력발전 단가에 가장 크게 영향을 미치는 것은 그 지역의 풍속 특성であり, 동일 성능의 풍력발전기라도 연 평균풍속에 따라 발전단가의 차이는 매우 크게 된다.

(4) 시스템 구조의 단순화

현대 들어 전력전자기술의 급격한 발전으로 풍력발전시스템의 구성 요소 중에서 기계장치들이 전기장치로 교체됨으로써 기계적 구조가 단순화되는 특징을 보이고 있다.

과거의 풍력발전기는 로터의 회전속도를 증속기를 통해 발전기 동기속도로 증속시켜 유도발전기를 통해 계통에 직접 연결하는 풍력발전기가 가장 널리 보급되었다. 그러나 근래에 들어와 로터의 회전속도를 증속장치가 아닌, 발전기 극수를 증대시킨 다극형 동기발전기를 이용하여 이를 전기적으로 해결하는 직접 구동형 풍력발전기의 개발이 새로운 분야로 자리잡고 있다.

이러한 단순화의 경향은 특히 대형풍력발전기에서 더욱 두드러져 새로운 개발 중인 2~3MW급 풍력발전의 많은 모델이 채택 중이거나 사용을 고려하고 있는 추세이다.

(5) 소음 저감

풍력발전시스템에서 제작단가 저감이나 신뢰도의 향상만큼이나 중요한 것이 풍력발전시스템 발생소음의 저감기술 향상이라 할 수 있다. 최근의 풍력발전시스템
템의 대형화는 필연적으로 풍력발전시스템의 소음 증가를 초래하게 되지만, 이전의 기술에 비해서 최근의 풍력발전시스템은 크기의 증가에 비해 소음 크기가 매우 더디게 커지고 있음을 보이고 있고, 이는 결국 공기역학적 소음이나 기계적 소음에 관한 지간기술이 발달하여 이전의 풍력발전기에 비해 최근의 풍력발전기는 소음이 덜하다는 것을 표시하게 된다.

다음의 (그림 2.14)에는 덴마크 내 풍력발전시스템의 기준 소음수준을 비교한 그림인데, 과거의 풍력발전기에 비해 최근의 풍력발전기가 크기가 커질수록 소음 크기의 증가정도가 현격히 줄어들고 있음을 보이고 있다.

(6) 해양풍력발전단지 (offshore wind farm) 건설

덴마크, 네덜란드, 독일 및 영국 등은 해안에서 수km떨어져 수심이 5m~20m 밖에 위에 풍력발전기를 설치하는 해양풍력발전단지를 개발 중에 있다. 이 해양풍력발전단지는 내륙의 공간적 제약에서 벗어나 해상의 우수한 풍력자원을 이용하고 저탄류성으로 인한 시스템의 수명증대를 가능성을 가지는 장점이 있다. 이는 장점에도 불구하고, 해상 구조물의 높은 설치비용으로 인해서 그동안 실용화 되지 못하였으나, 대형풍력발전기 개발의 성공으로 인하여, 단위기의 용량을

13) 산업자원부, 풍력발전단지 건설 타당성 분석 연구, 1999, pp.28.
대형화 할수 있음으로 발전단가의 경쟁성을 확보해가고 있는 실험이다. 덴마크 전력회사들의 경제성분석 결과에 따르면 대당 용량 1,500kW 풍력발전기를 사용한 해상풍력발전단지의 경우 Tuno지역의 해상단지의 경우는 발전원가는 kwh당 현재 6cents에서 3.8cents로 낮아질 것으로 전망하고 있다. 14)

현재 덴마크와 네덜란드 북쪽 해안에 대규모 해상풍력단지가 건설 중에 있으며 이들 해상단지의 용량은 각각 600MW와 100MW에 이르며, 건설비용은 kW당 약 1,560ECU과 2,250ECU 이를 것으로 예상된다. 또한 덴마크는 2030년까지 4,000MW의 해상풍력단지를 조성한다는 목표를 세우고 있다.

2.2.2 국외 풍력발전시스템 운용사례

(1) 미국 CALIFORNIA WINDFARM

미국의 캘리포니아주의 풍력단지는 1980년대부터 본격적으로 개발되기 시작하여, 주내에 대규모의 풍력단지가 5개소 정도가 있다. 20세기 초반 주로 목장의 관개나 양수를 위해 약 5만여대의 풍력기를 이용하였던 미국은, 양수용 풍력기 기의 경쟁력 상실로 풍력산업이 사라졌다가 최근 15년사이 민간 및 공공부문의 투자와 첨단관련 법률등의 제정으로 중흥기를 맞이하고 있다. 현재, 캘리포니아 주 내의 5개의 큰 풍력단지에서는 약 16,000대의 시스템이 운전중에 있으며, 약 30억kWh의 전력을 생산하고 있다. 이중 샌프란시스코의 동쪽에 위치한 ALTAMONT PASS, 로스앤젤레스의 북쪽에 위치한 TEHACHAPI PASS, 로스앤젤레스의 동쪽에 위치한 SAN GORGONIO PASS 지역에 가장많은 풍력발전 시스템이 보급되어 있으며, 이 외에 SAN JOAQUIN 과 SACRAMENTO 강 근처의 SOLANO 지방과 샌프란시스코의 남동쪽에 위치한 PACHECO PASS 에도 풍력발전 단지가 조성되어 있다. 15)

현재 미국에서 풍력발전에 의하여 공급되는 전력량은 미국 전체 발전량의 0.2%에 불과하지만, 2010년까지는 총 23,000MW의 풍력발전 시스템이 보급될 것

14) op. cit. pp.30
(2) 덴마크 REJSBY HEDE WINDFARM

본 풍력단지는 덴마크 서부의 REJSBY HEDE에 위치하며, NEG-MICON사의 600kW 풍력시스템 40기로서 총 용량 24MW를 이루고 있다. 풍력단지는 자동제어장치로서 모든 풍력시스템이 제어되고 있으며, 연간 약 60GWh의 전력을 생산할 것으로 예측되고 있다. 이 단지는 덴마크의 2005년도 가지 1,500MW의 풍력시스템을 추가로 건설하려는 "Energy 2000" 계획에 의거하여 건설되었으며, 덴마크 남 유럽판도 지역 전력회사에 의해 1995년도에 건설되었다. 풍력발전시스템은 NEG-MICON의 600kW(회전자 직경 43m, 발전기 높이 46m)시스템으로 이루어져 있고, 각 시스템은 3개의 100평방 미터의 연면적만을 차지하고 있다. 여기서, 생산되는 전력은 약 16,000 가구에 충분한 전력을 공급할 수 있는 양이며, 이로 인해 연간 45,000톤의 이산화탄소와 150톤의 이산화황의 배출억제 효과를 갖는 것으로 분석되고 있다.

(3) 덴마크 TUNO OFF-SHORE WINDFARM

세계에서 첫 번째로 건설된 VINDEBY 해안형 풍력단지에 이어 세 번째로 건설된 해안형 풍력단지(Off-shore Windfarm)가 덴마크 Jutland 동쪽 6km 근해 약 수심 3~5미터 내외의 해상위에 설치되어 1995년도부터 운전중에 있다. 이 풍력단지는 "Energy 2000" 계획의 일환으로서 덴마크 VESTAS사의 500kW 풍력발전시스템 10대가 2열로 배치되어 있으며, 연안형 풍력단지에 대한 시범사업 성격으로 건설되었다. 연안형 풍력단지의 건설은 여러 가지 면에서 유리한 점을 갖고 있다. 즉, 평부하며 깨끗한 절의 바람을 이용하여 내륙보다도 높은 운전 효

16) 손충열, 국내외 풍력발전기의 기술개발 및 보급현황, 재생가능에너지 제 2차 워크샵. 2002.2, pp.25
율을 얻을 수 있다는 점과 야생동물이나 주변 민간에 미치는 환경영향적 요소가 거의 없다는 장점을 지니고 있다. 이 풍력단지는 연간 약 15,000MWh의 전력을 생산하여 약 4000가구에 전력을 공급할 수 있는 양을 생산하며, 이로 인해 약 12,500톤의 이산화탄소와 이산화황 44톤, 질소산화물 30톤의 배출을 억제하는 효과를 갖는 것으로 분석되고 있다.

1990년대 이후에는 계통연계형 풍력발전단지 조성이 활발히 진행에 따라 시스템의 대형화, 구조의 단순화를 통한 생산원가의 하락과 해양풍력발전 단지 개발이라는 경향을 보이고 있다. <표 2.2>는 각 풍력발전시스템의 적용사례를 소형시스템, 풍력발전단지, 해양형발전단지로 분류하여 정리한 것이다.
<표 2.2> 각 풍력발전시스템 적용사례

<table>
<thead>
<tr>
<th>특 설</th>
<th>적용사례</th>
</tr>
</thead>
<tbody>
<tr>
<td>소형시스템 (Small Turbine System)</td>
<td>소형풍력시스템(20 W~100 kW)은 주택용으로 많이 사용된다. 그러나 농장이나 학교 또 다른 잔업작업에 동력을 제공하는데 쓰일 수 있다. 주로 소형풍력터빈과 PV판넬이 통합된다. 풍력은 친환경, 연산량을 줄이기 때문에 안정적인 전력 공급에 적합하다. 시스템의 크기는 수요가 사용하는 양과 연간평균풍속에 의해 결정된다. 오른쪽 사진은 Oklahoma의 주택에 적용된 10KW급 소형 풍력장치로 기존전력망과 비교해서 30%정도의 절감효과를 나타내고 있다.</td>
</tr>
<tr>
<td>대형풍력 발전단지 (Windfarm)</td>
<td>현재 미국에서 풍력발전에 의하여 공급되는 전력량은 미국 전체 발전량의 0.2%에 불과하지만 미국의 에너지상에서는 2000년도부터 풍력발전에 의해 생산되는 전력량을 최근 캘리포니아주에서 생산되는 전력의 10배가 넘을 것으로 추정하고 있다. 미국의 풍력발전장치는 세계 각국의 풍력발전시스템에 모여 운전중에 있어, 상호간 성능의 비교대상이 되기도 한다. 그러나, 이 풍력발전장치 개발자는 오래된 단일기의 평균 정격효율이 약 50kW대의 정도이므로 경제적인 면에서 최근의 개발된 대형의 풍력발전시스템에 비해지는 다소 불리한 면을 지니고 있다. 오른쪽 아래의 사진은 덴마크 서부의 REJSBY HEDE에 위치한 풍력단지로서, NEG-MICON사의 60kW 풍력시스템 40기가 통용량 24MW를 이루고 있다. 자체제어장치로서 모든 풍력시스템이 제어되고 있으며, 연간 약 60 GWh의 전력을 생산할 것으로 예측되고 있다. 이것은 약 16,000 가구에 충분한 전력을 공급할 수 있는 양이며, 연간 45,000톤의 이산화탄소와 150톤의 이산화황의 배출저해 효과를 갖는 것으로 분석되고 있다.</td>
</tr>
<tr>
<td>해안형 풍력단지 (Off-shore windfarm)</td>
<td>공부하고 까끗한 양질의 바람을 이용하여 내륙보다 높은 운전 효율을 얻을 수 있다는 점과 야생 동물이나 주변 민가에 미치는 환경영향적 요소가 거의 없다는 장점을 가지고 있는 해안형 풍력단지가 개발되고 있다. 그렇기 때문에 세계에서 세 번째로 건설된 TUNO 연안형 풍력단지로서 덴마크 Jutland 동쪽 6km 근해 약 수심 3-5미터 내외의 해상위에 설치되어 1995년도부터 운전중에 있다. 이 단지에는 덴마크 VESTAS사의 500kW 풍력발전시스템 10대가 2열로 배치되었다.</td>
</tr>
</tbody>
</table>
2.3 국내 풍력발전의 현황

2.3.1 국내 대체에너지 현황

<표 2.3> 에 대체에너지원별 공급현황을 나타내고 있다. 1990년 들어 연평균 20.1%의 높은 성장을 나타내고 있으며, 1999년도의 공급실적은 1991년도에 비해 4.6배의 증가를 보이고 있다. 1999년도의 원별 공급현황을 살펴보면, 폐기물이 전체 공급량의 약 93%인 1760.5천TOE로서 대부분을 차지하고 있으며 다음으로 바이오가 3.0%인 64.9천TOE를 차지하고 있다. 따라서, 아직까지 폐기물을 제외한 기타에너지에 의해 공급되는 에너지량은 미약한 실정이다.17)

17) 김두훈, 한국의 풍력발전 현황 및 전망, 국회환경청재연구회정책심포지엄-에너지시스템전환과계 생각능에너지, 2002.2, pp.38-39
<표 2.3> 대체에너지원별 공급현황 (단위: 천TOE)

<table>
<thead>
<tr>
<th>구분</th>
<th>'91</th>
<th>'93</th>
<th>'95</th>
<th>'97</th>
<th>'99</th>
</tr>
</thead>
<tbody>
<tr>
<td>태양열</td>
<td>11.4</td>
<td>14.1</td>
<td>22.1</td>
<td>45.5</td>
<td>42.1</td>
</tr>
<tr>
<td>태양광</td>
<td>1.3</td>
<td>2.0</td>
<td>2.2</td>
<td>3.1</td>
<td>4.5</td>
</tr>
<tr>
<td>바이오</td>
<td>62.6</td>
<td>58.8</td>
<td>59.2</td>
<td>67.6</td>
<td>64.9</td>
</tr>
<tr>
<td>폐기물</td>
<td>318.7</td>
<td>545.6</td>
<td>804.5</td>
<td>1,282.5</td>
<td>1,760.5</td>
</tr>
<tr>
<td>소수력</td>
<td>18.6</td>
<td>28.8</td>
<td>20.4</td>
<td>22.5</td>
<td>27.1</td>
</tr>
<tr>
<td>풍력</td>
<td>0.03</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>합계</td>
<td>412.6</td>
<td>649.6</td>
<td>908.5</td>
<td>1,421.3</td>
<td>1,900.6</td>
</tr>
</tbody>
</table>

(출처: 에너지관리공단, 신·재생에너지관련 자료집, 1999)

대체에너지 중에서 가장 많은 비중을 차지하고 있는 폐기물에너지 및 폐열 에너지에서 열과 전력의 비중을 살펴보면 98.3:1.7의 비율로 열의 비중이 높고 전력의 비중이 극히 낮은 수준에 머물러 있으므로 현재 대체에너지가 국내의 전력 생산량에서 차지하는 비중은 극히 적음을 알 수 있다.

2.3.2 국내 풍력발전 동향

우리나라의 대체에너지원 중에서 풍력발전의 국내 보급은 정부주도의 시범 사업 추진으로써 '90년대에 들어서 기술개발 차원에서 소형 풍력발전기를 설치하기 시작하였으며 '97년부터 정부 주도하에 풍력단지조성 시범 사업이 제주도에서부터 시행되기 시작하였다.

국내의 풍력발전기 이용현황은 <표 2.4>와 같이 정리된다. 2001년 현재 총 8.4MW의 설치가 제주도, 전남무안 및 경북포항 등지에서 운용 중에 있으며, 중·대형급 풍력발전기의 블레이드, 중속기 및 발전기와 전력변환장치 및 제어장치들의 개발이 국가주도로 진행 중에 있다. 그러나 외국과 같이 중소규모의 발전 단지화를 위한 시도가 없었으나 강원도발전단지 조성과 같은 민간주도의 풍력 발전단지 건설이 급려되어 추진중에 있어 풍력발전에 대한 관심이 증대되고 있다. 제주도 해양지역의 소규모 풍력발전단지는 1997년 정부가 시범사업으로 시작.
하여 매년 1,500~2,000kW씩 규모를 증설해 가고 있는 것으로, 2001년 현재 총 설비용량 약 6MW의 풍력발전기가 운용중에 있다.

<표 2.4> 국내의 풍력발전기 이용현황

<table>
<thead>
<tr>
<th>설치장소</th>
<th>용량(kW)</th>
<th>운전개시</th>
<th>발전실적(kWh)</th>
<th>설치 및 운영기관</th>
<th>지원 기관</th>
</tr>
</thead>
<tbody>
<tr>
<td>제주 중문</td>
<td>250</td>
<td>1992. 2.</td>
<td>1,100,000</td>
<td>한국에너지기술연구소</td>
<td>한국관광공사</td>
</tr>
<tr>
<td>제주 원령</td>
<td>100, 30x2</td>
<td>1995. 4.</td>
<td>1,043,000</td>
<td>한국에너지기술연구소</td>
<td>동상산업부에너지자원센터</td>
</tr>
<tr>
<td>전남 무안</td>
<td>300</td>
<td>1996. 7.</td>
<td>가동중지</td>
<td>한국화이바</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>전남 무안</td>
<td>550</td>
<td>1997. 8.</td>
<td>운영중</td>
<td>한국화이바</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>제주 행원리</td>
<td>600x2</td>
<td>1998. 3.</td>
<td>13,700,000</td>
<td>제주도</td>
<td>산업자원부 한국에너지기술연구소 제주대학교</td>
</tr>
<tr>
<td>전남 무안</td>
<td>750</td>
<td>1999. 4.</td>
<td>시운전중</td>
<td>한국화이바</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>경북 울릉도</td>
<td>600</td>
<td>1999. 11.</td>
<td>시운전중</td>
<td>경상북도</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>제주 행원리</td>
<td>750x2</td>
<td>2000. 1.</td>
<td>운영중</td>
<td>제주도</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>제주 행원리</td>
<td>660x2</td>
<td>2001. 5.</td>
<td>운영중</td>
<td>제주도</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>강원도대관령</td>
<td>750x2</td>
<td>2002. 11.</td>
<td>예정</td>
<td>강원도</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>경북 포항시</td>
<td>660x1</td>
<td>2001. 3.</td>
<td>운영중</td>
<td>경상북도</td>
<td>산업자원부에너지자원센터</td>
</tr>
<tr>
<td>전북 세안군</td>
<td>750x2</td>
<td>2002. 8.</td>
<td>예정</td>
<td>전라북도</td>
<td>산업자원부에너지자원센터</td>
</tr>
</tbody>
</table>
2.4 풍력발전 기술 전망

풍력발전 기술은 대체에너지 기술중 가장 실용화에 근접한 신발전 기술로서 매년 25% 이상 세계시장의 규모가 성장하여 현재 약 13,400MW이상의 설비용량이 설치되어 운전중이며 연간 24억TWh 이상의 청정전력을 생산중인 에너지기술로서 허무없이 국내에서도 이의 효율적인 기술개발 제계의 확립이 필요하다고 할 수 있다.

현재, 풍력발전시스템 설치 평균 용량은 500~600kW로서 중대형화 하면서 세계 풍력발전시스템의 가격은 평균 USD900/kW 정도이며, 설치비는 평균 USD1,200/kW로서 매우 경제적인 기술로서 부각되고 있다. 국내의 경우에는 국주도내 풍력사업의 설치비는 약 USD1,600/kW(W1,200/USD)로서 설치투자 효용성이 뛰어난 것으로 나타나고 있으며, 미국 DOE는 2000년도 말까지 USD0.025/kWh의 발전단가를 목표로 하는 프로그램 진행중일 정도로 실용적인 기술로서 자리잡고 있다.18)

이에 반해 우리나라의 풍력기술 개발측면에서는 초보단계로서 풍력기기의 국산화 분야에 서는, 아직 국산화가 완전히 이루어 있지 않은 상태로 외국의 풍력기기의 도입과 시험운전의 단계에 머물고 있으며, 부분적 국산화에 의한 구성 요소들에 대한 기술을 보유하고 있을 뿐이다. 풍력에너지 이용의 선형조건이 되는 풍력자원의 측정 및 예측기술 면에서도 아직 종합적인 국내 풍력 자료의 종합측정과 국부분포 및 예측기술개발이 진행되고 있는 상황이다. 풍력발전 기기 관련 기술은 항공, 기계, 전기, 제어 및 모 komt 등 조합기술로서 전반적인 기술개발 추진체계의 효율적 구성과 풍력발전 기기 관련 종합적인 엔지니어링 기술과 경험이 매우 부족한 상태로서, 풍력발전 관련기술의 외국 도입도 사실상 어려운 상태로서 최근의 지역에너지 시범사업을 통하여 기술의 수입에 의존하고 있는 실정이다. 따라서, 기술개발에 대한 가시적 계획의 제시로 기술개발과 보급촉진의 외적 환경의 조성도 만들어져야 할 것이다.

풍력기술의 개발 필요성에 대한 경제산업적 측면을 살펴보면, 국내외 환경규제

강화 및 기후변화협약에 능동적으로 대처하기 위한 환경친화적 발전원의 개발과 국가 대체에너지 기술개발 및 보급계획에 대한 적극적 대응기술이라는 것을 들 수 있다. <표 2.5>와 같이 우리나라의 연도별 총에너지중 대체에너지 공급량에 대한 목표는 설정되었으므로, 이의 구체적인 실현기술로서 풍력기술의 개발이 진행되어야 할 것이다.

<table>
<thead>
<tr>
<th>연도</th>
<th>1998</th>
<th>1999</th>
<th>2001</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>대체에너지소비비중(%)</td>
<td>0.8</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
</tr>
</tbody>
</table>

또한, 국내 경제성장률 이상의 에너지 소비(175백만TOE/1999년) 증가율로 인한 해외 에너지 수입 의존도의 감소 유도와 선진국형 고급 에너지(전기, 가스) 수급에 기여하며, 대용량 원전 개발의 부담을 완화하여 전력계통 안정을 위한 분산형 전원개발의 확대에 부응하는 효과도 가질 수 있을 것이다. 이밖에도, 지구 온난화 가속 방출억제의 국제적 환경변화에 대비한 국가적 정책 발전기술로서의 역할중대에 대한 대비기술로 또는 풍력발전 단지의 개발로 국토 이용의 효용성 중대 및 복합기술체로서의 기술 개발로 관련산업의 기술 개발 과급효과와 고용 창출 효과가 매우 크며, 사회비용도 타 에너지원에 비해 낮아(풍력 0.1~0.2/kWh, 원자력 1~5.7/kWh 석탄 3~10/kWh) 가장 환경친화적인 기술로서 국내 개발 가치가 매우 높다고 할 수 있다. 풍력발전시스템의 극단화 및 이용기술의 개발로 약 20MW 규모의 대단위 국가 풍력발전 단지를 건설하게 되면, 이산화탄소 저감효과는 12,350CarbonTon 정도의 막대한 양의 배출이 억제되는 효과를 나타내게 된다.

따라서, 기술개발을 통해 실용성 있는 풍력발전기술의 개발로 미래에너지원 확보와 국내 부존자원의 최대활용과 공해물질 배출 억제로 환경보전에 기여하게 되는 효과와 지구 온난화 방지에 능동적 대책으로서 역할을 수행할 수 있는 대표적 기술이라고 할 수 있다. 따라서, 향후의 환경보전에 대한 범지구적 규제상황에 대해서도 풍력기술의 개발을 통한 적극적 이산화탄소 저감기술의 확보로 지속적인 국내 경제발전을 유도해 나아가야 할 것이다.
제 3장 공동주택단지의 풍력 발전시스템 적용가능성 검토 및 Process 설정

공동주택 단지내에 풍력발전시스템을 도입하기 위해서는 지역별 풍속과 풍향 등 풍력자원의 특성분석이 필수적이라 할 수 있으며 분석된 특성에 따라 적정시스템을 선정하게 된다. 본 연구는 서울지역의 지난 1991년부터 2001년까지 11년간 서울지역 기상대 측후소의 풍속관측 데이터를 분석하여 공동주택 유형별 적용가능성을 예측하였으며, 풍력발전시스템 고찰을 통하여 적용가 가능한 경우의 적정 풍력발전시스템을 선정하였다. 공동주택단지에 풍력발전시스템의 배치계획시 검토사항을 건물에 의한 기류의 변화와 공동주택단지의 건축특성에 의한 입면, 평면상 배치계획으로 분류하여 고찰하였다. 이를 바탕으로 공동주택단지내 풍력발전시스템의 설계 Process를 제시하였다.

3.1 공동주택단지내 풍력발전시스템의 적용가능성 분석

3.1.1 기후데이터분석

(1) 분석개요

현재 지구상의 대기권에는 GW상당의 풍력에너지자원이 있다고 평가되고 있는데19) 화석연료와 달리 대기오염이나 공해물질 배출과 같이 생태계를 파괴하지 않는 청정에너지로서 어느 곳에도 산재되어 있는 풍력에너지를 대체에너지를 활용하기 위해서 세계각국에서 노력을 하고 있다. 20)

본 장에서는 현재 우리나라의 기상대산하 71개소의 측후소와 관측소 중 서울
지역기상청에서 수집되어 분석된 1991년 1월 1일부터 2001년 12월 31일까지의 총 96,360개의 메시 평균풍속자료와 평균자료를 기본데이터로 사용하여 서울지역의 평균풍량과 평균에너지 특성을 조사하였다.

기상대에서의 평균풍속은 주위 장애물의 영향을 덜 받는 위치에서 행함을 원칙으로 하므로 본 연구에서는 기상대의 각 측후소와 관측소의 평균관측데이터가 그 지역일대를 대표하는 값이라 가정하였으며, 서울지역 측후소의 평균관측높이 는 10.6m이며 측후소의 위치정보는 〈표 3.1〉과 같다.

<table>
<thead>
<tr>
<th>지점</th>
<th>위도</th>
<th>경도</th>
<th>고도</th>
<th>지상높이</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>서울</td>
<td>37°34’</td>
<td>126°58’</td>
<td>85.5m</td>
<td>10.6m</td>
<td>내륙</td>
</tr>
</tbody>
</table>

(2) 기후분석결과

가. 월별 평균변화

한반도는 지리적으로 대륙과 대양의 사이에 위치하고 있어 계절풍의 영향을 받으며 월별평균풍속과 주풍향의 변화는 전국적으로 비슷한 양상을 보이는 데, (그림 3.1)의 서울지역의 분석결과를 보면 겨울에서 봄철까지는 2.5m/s가 넘는 비교적 높은 평균을 보이고 있으나 여름철과 가을철인 8-11월의 경우 2m/s를 넘지 않고 있었다. 즉, 한반도는 여름철과 초가을철에 대풍이 불어오기는 하지만 이 기간동안 서울지역에서는 월평균풍속이 가장 작게 나타났으며 겨울철에서 초 봄철에 이르기까지 월평균풍속이 가장 크게 나타나고 있었다. (그림 3.1)은 주간 (10시-22시), 야간(23시-9시)의 월별 평균풍속을 나타낸 것이다. 주간이 야간보다 1m/s이상 강한 평균풍속을 나타내고 있었다.

21) 기상청, 한국기후표 제1권, 1991.6, pp.iii.
나. 연간 평균풍속 분포분석

풍속은 10단계로 분류하여 각 평균평균은 같은 단계별 발생빈도수를 백분율로 나타내었다. <표 3.2>는 서울지역의 11년간의 평균풍속의 분포분석 결과이다.

무풍(0.0 - 0.2m/s)은 6.27%로 나타났으며, 평균풍속은 2.5/m/s이하인 경우가 약 50%로 나타났으며, 평균이 2.5~3.5/m/s인 경우는 17.14%로 나타났다. 평균은 북동풍(NE,ENE)이 23.15%를 나타냈으나 평균은 2.5/m/s 이하의 약한 편이었으며, 서풍계열(W,WNW)인 경우 25.42%로 제일 높은 빈도를 나타내며 평균도 2.5~4.5/m/s로 높은 편으로 서울지역의 주평균은 서풍임을 알 수 있다.
<표 3.2> 풍향별 풍속단계별 비도분석

<table>
<thead>
<tr>
<th>풍속 (m/s)</th>
<th>N</th>
<th>NNE</th>
<th>NE</th>
<th>ENE</th>
<th>E</th>
<th>ESE</th>
<th>SE</th>
<th>SSE</th>
<th>S</th>
<th>SSW</th>
<th>SW</th>
<th>WSW</th>
<th>W</th>
<th>WN</th>
<th>NW</th>
<th>NNW</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0-0.2</td>
<td></td>
<td>6.27</td>
</tr>
<tr>
<td>0.3-1.5</td>
<td>1.12</td>
<td>2.51</td>
<td>6.73</td>
<td>4.80</td>
<td>2.02</td>
<td>0.98</td>
<td>0.89</td>
<td>0.69</td>
<td>0.85</td>
<td>0.96</td>
<td>1.57</td>
<td>1.70</td>
<td>3.14</td>
<td>3.06</td>
<td>2.59</td>
<td>0.97</td>
<td>34.59</td>
</tr>
<tr>
<td>1.6-2.5</td>
<td>0.29</td>
<td>0.45</td>
<td>3.49</td>
<td>4.14</td>
<td>1.62</td>
<td>0.45</td>
<td>0.45</td>
<td>0.42</td>
<td>0.49</td>
<td>1.02</td>
<td>2.08</td>
<td>2.20</td>
<td>3.72</td>
<td>3.46</td>
<td>2.28</td>
<td>0.72</td>
<td>27.29</td>
</tr>
<tr>
<td>2.6-3.5</td>
<td>0.13</td>
<td>0.08</td>
<td>1.10</td>
<td>1.76</td>
<td>0.62</td>
<td>0.10</td>
<td>0.08</td>
<td>0.09</td>
<td>0.19</td>
<td>0.88</td>
<td>1.88</td>
<td>1.68</td>
<td>3.06</td>
<td>3.04</td>
<td>1.92</td>
<td>0.53</td>
<td>17.14</td>
</tr>
<tr>
<td>3.6-4.5</td>
<td>0.05</td>
<td>0.02</td>
<td>0.31</td>
<td>0.53</td>
<td>0.20</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.07</td>
<td>0.45</td>
<td>1.16</td>
<td>0.84</td>
<td>1.51</td>
<td>1.77</td>
<td>1.25</td>
<td>0.24</td>
<td>8.43</td>
</tr>
<tr>
<td>4.6-5.5</td>
<td>0.03</td>
<td>0.01</td>
<td>0.09</td>
<td>0.13</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.26</td>
<td>0.73</td>
<td>0.33</td>
<td>0.70</td>
<td>0.89</td>
<td>0.51</td>
<td>0.08</td>
<td>3.85</td>
</tr>
<tr>
<td>5.6-6.5</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.08</td>
<td>0.27</td>
<td>0.14</td>
<td>0.32</td>
<td>0.37</td>
<td>0.21</td>
<td>0.03</td>
<td>1.51</td>
</tr>
<tr>
<td>6.6-7.5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.13</td>
<td>0.05</td>
<td>0.13</td>
<td>0.14</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>7.6-8.5</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>8.5이상</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>total (%)</td>
<td>1.62</td>
<td>3.07</td>
<td>11.75</td>
<td>11.40</td>
<td>4.56</td>
<td>1.53</td>
<td>1.44</td>
<td>1.21</td>
<td>1.65</td>
<td>3.77</td>
<td>7.90</td>
<td>6.97</td>
<td>12.62</td>
<td>12.80</td>
<td>8.87</td>
<td>2.59</td>
<td>100</td>
</tr>
</tbody>
</table>

(3) 소결

서울지역의 풍향데이터를 분석한 결과 평균풍속은 2.2m/s로 주간은 2.73m/s, 야간은 1.66m/s로 주간이 강한 풍속을 나타내었고, 주풍향은 서풍인 것으로 나타났으며, 일정한 풍향을 보이지 않아 대형풍력발전단계는 적합하지 않은 것으로 보인다. 그러나, 중소형풍력발전시스템은 안정된 풍향추적장치를 장착하여 풍향의 추적에는 크게 무리가 따른 시스템이 아니므로 풍향의 안정도보다는 풍력시스템적용시 고려되는 분석된 풍속의 세기를 보다 중요하게 고려하여 검토를 하면 무리가 없을 것으로 추측된다.
3.1.2 공동주택단지의 풍력 발전시스템 적용가능성 분석

(1) 분석개요

서울지역 공동주택단지에 풍력발전시스템을 적용하기 위해서 공동주택단지의 건축적 특성중 종류에 영향을 미치는 건물높이에 따라 다음과 같이 분류하여 풍력발전시스템의 적용가능성 분석을 실시하였다.

가. 높이에 따른 공동주택단지 유형분류(주동층수에 의한 분류)

 공동주택의 층수에 대한 기준은 다음 4가지로 구분된다고 볼 수 있다.22)
 -저층(6층이하) : walk-up 형태의 아파트로 1980년대 전반까지만 해도 선회되었던 형식으로 관리비가 저렴하나 4.5층주민들이 보행길이가 길어 최근 들어 선호도가 크게 떨어졌다.
 -고층(7층-15층) : 건축법상 엘리베이터를 설치하는 보편적 형식이나 개발주체에 의해 단위면적당 개발비용이 가장 저렴한 15층이 선호되고 있다.
 -초고층(16층 이상) : 수도권 5개 신도시 개발시부터 보편화된 형식으로 건축법상 규제가 강화되거나 높은 분양가를 인정받아 주택건설업체들이 선호하며, 주민들은 전망 좋은 집을 높이 사지만, 반대로 불안해하는 계층도 많이 있다.
 -중층(법적 구분은 아니나 권의상 7-10층으로 구분) : 경제적 이유로 보편적이지 않은 형식이다.

 최근 공동주택의 초고층화 경향이 지배적이며, 이는 지가가 상대적으로 높은 서울지역에서 더욱 실화되고 있다. 따라서 본 연구에서는 중층형을 제외하였으며, 기존에 주로 건축되었던 저층형인 5층형, 중층형 15층형과 최근들어 그공급량이 증가하고 있는 초고층형인 25층형단지로 분류하였으며, 각 단지는 층수가 동일한 주동으로 구성된 것을 기본으로 가정하였다.

22) 김현식 외, 삶의 질 향상을 위한 주거단지계획지침 연구, 국토개발연구원, 1997, p.104
(2) 분석방법

충수별, 단지주변특성별로 분류된 공동주택단지를 지붕측에 풍력발전시스템이 설치된다고 가정하고 풍속을 보정하여 분석을 실시하였다.

가. 분류조건에 따른 풍속보정

풍속은 일반적으로 높이와 더불어 증가한다. 지표면부근에서 풍속이 약해지는 것은 지면마찰에 의한 것이다. 풍속계는 보통 10m 높이에 설치되는데, 현재 우리나라 기상대산화의 서울측후소의 풍속 측정높이는 10.6m로 이를 공동주택 높이별로 보정하여 비교하기 위하여 (식 3.1)\(^{23}\)을 이용하였다.

(식 3.1)

여기에서 \(o\) 높이 \(x\) m로 보정된 풍속을 가리키며, \(n\)는 각 측후소에서 관측된 풍속을, \(m\)은 보정높이인 \(x\) m를 나타내고 \(n\)는 각 측후소의 풍속 관측높이를 표시하고 있다. \(n\)은 지표면의 형상에 따라 결정되는 지수로서 일반적으로 평원이나 해안에서는 0.1~0.14, 전원에서는 0.17~0.25, 시가지에서는 0.25~0.5의 값을 갖는다\(^{24}\). 본 연구에서는 각 주동의 충수를 충고 2.6m에 10m 를 합산하여 계산하였고, \(n\)을 0.30로 입력하여 풍속데이터를 보정하였다.

(3) 평온분석결과

풍속은 보정하여 분석한 결과 각 단지유형별로 평균에 따라 다양한 결과가 예측되었다. 각 층수별 단지의 월별 평균풍속과 현재 상용화되어있는 중소형풍력 발전시스템의 시동풍속인 3.5m/s이상의 평균풍속을 분석하였으며 일반적으로 평균풍속이 3.5m/s이상이며 40%가 넘는 비도를 보일 때 풍력발전시스템의 적용이 가능하다.

가. 공통주택단지 유형별 월별풍속변화

(그림 3.3)은 각 주동별 월별풍속변화를 나타낸 것인데, 11월경부터 평균이 증가하기 시작하여 3,4월에 가장 높은 평균을 보이고 있었으며, 여름철인 8,9월에 가장 낮은 평균을 나타내고 있었다.

<table>
<thead>
<tr>
<th>Terrain Type</th>
<th>Friction Coefficient()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake, ocean and smooth hard ground</td>
<td>0.10</td>
</tr>
<tr>
<td>Foot high grass on level ground</td>
<td>0.15</td>
</tr>
<tr>
<td>Tall crops, hedges, and shrubs</td>
<td>0.20</td>
</tr>
<tr>
<td>Wooded country w/many trees</td>
<td>0.25</td>
</tr>
<tr>
<td>Small town with some trees and shrubs</td>
<td>0.30</td>
</tr>
<tr>
<td>City area with tall buildings</td>
<td>0.40</td>
</tr>
</tbody>
</table>

<표 3.3> Friction Coefficient of Various Terrain
5층주동에서의 봉속은 대체로 3m/s 내외의 수준이었으며, 15층주동의 경우 8~10월을 제외한 모든 시기에 3m/s 가 넘는 봉속을 나타내었다. 25층주동의 경우에는 연중 3m/s 이상의 봉속분포를 보이며 특히, 11월부터 6월까지는 3.5m/s 가 넘는 봉속을 나타내고 있었다.

<표 3.4> 각 주동별 분석결과

<table>
<thead>
<tr>
<th></th>
<th>5층형</th>
<th></th>
<th>15층형</th>
<th></th>
<th>25층형</th>
</tr>
</thead>
<tbody>
<tr>
<td>평균풍속 (m/s)</td>
<td>3.5m/s 이상 (%)</td>
<td>평균풍속 (m/s)</td>
<td>3.5m/s 이상 (%)</td>
<td>평균풍속 (m/s)</td>
<td>3.5m/s 이상 (%)</td>
</tr>
<tr>
<td>1월</td>
<td>3.08</td>
<td>35.4</td>
<td>3.82</td>
<td>49.8</td>
<td>4.32</td>
</tr>
<tr>
<td>2월</td>
<td>3.33</td>
<td>35.9</td>
<td>4.12</td>
<td>49.3</td>
<td>4.66</td>
</tr>
<tr>
<td>3월</td>
<td>3.52</td>
<td>44</td>
<td>4.36</td>
<td>58.8</td>
<td>4.94</td>
</tr>
<tr>
<td>4월</td>
<td>3.46</td>
<td>40.1</td>
<td>4.29</td>
<td>54.5</td>
<td>4.85</td>
</tr>
<tr>
<td>5월</td>
<td>3.14</td>
<td>38.3</td>
<td>3.89</td>
<td>52.3</td>
<td>4.38</td>
</tr>
<tr>
<td>6월</td>
<td>2.63</td>
<td>26.6</td>
<td>3.25</td>
<td>41.4</td>
<td>3.68</td>
</tr>
<tr>
<td>7월</td>
<td>2.74</td>
<td>28.4</td>
<td>3.40</td>
<td>44.0</td>
<td>3.84</td>
</tr>
<tr>
<td>8월</td>
<td>2.36</td>
<td>21.7</td>
<td>2.93</td>
<td>36.6</td>
<td>3.31</td>
</tr>
<tr>
<td>9월</td>
<td>2.21</td>
<td>17.9</td>
<td>2.73</td>
<td>30.0</td>
<td>3.09</td>
</tr>
<tr>
<td>10월</td>
<td>2.31</td>
<td>21.7</td>
<td>2.86</td>
<td>34.1</td>
<td>3.24</td>
</tr>
<tr>
<td>11월</td>
<td>2.57</td>
<td>24.8</td>
<td>3.18</td>
<td>37.2</td>
<td>3.60</td>
</tr>
<tr>
<td>12월</td>
<td>2.73</td>
<td>27.2</td>
<td>3.38</td>
<td>41.6</td>
<td>3.82</td>
</tr>
<tr>
<td>평균</td>
<td>2.84</td>
<td>30.3</td>
<td>3.52</td>
<td>44.1</td>
<td>3.98</td>
</tr>
</tbody>
</table>

<표 3.4>는 각 주동형의 월별 봉속빈도분석결과를 나타낸 것이다. 3.5m/s이 봉속의빈도를 살펴보면 5층형 주동의 경우 3,4월에는 40%정도의 빈도를 보이고 있으나 연중 20~30%의 낮은 빈도분포를 보였다. 15층형 주동은 평균 44.1%로서 중력발전시스템의 적응가능성을 보여주고 있는데, 8월부터 11월을 제외한 기간에 평균풍속이 3.5m/s를 넘고 그 빈도 또한 40%에서 50%까지 이르고 있다. 25층형 주동은 건물높이가 상승함에 따라 봉속 또한 증가하고 있었는데, 연평균풍속 3.98m/s, 빈도분포 49.4%를 보이고 있어 연중 중력발전시스템의 적응이 가능할 것으로 분석되었다.
(4) 공동주택분류에 따른 풍력에너지밀도 분석

가. 분석개요

풍력발전에 있어서 동력원은 바람이며 그 지역의 풍력자원 부존량은 풍력발전의 타당성을 조사하기 위한 기초자료가 된다. 본 연구에서는 서울의 11년간의 풍속데이터를 이용하여 풍력에너지밀도를 추정하였다. 여기서 풍력에너지밀도는 수직단면적 1m²를 1년동안 통과하는 바람이 가지는 운동에너지를 의미한다. 풍력에너지밀도를 계산하는 방식은 여러 가지가 있으나, 본 연구에서는 평균풍속과 변동율(perturbation from the mean)의 합계에 기초한 (식 3.2)를 사용하였다. 여기서 실제 풍속 로 표현된다. 다시 이며, 여기서 는 12 개월동안의 월평균풍속의 표준편차이다.

따라서 풍력에너지밀도 는 (식 3.2)으로 계산될 수 있다. 25)

(식 3.2)

여기서 는 그 지역의 공기밀도이며, 본 연구에서는 공기밀도를 표준기압하에서의 공기밀도 1.225kg/m³로 입력하여 분석하였다.

나. 분석결과

풍력에너지밀도는 다음과 같은 등급으로 평가되는데 <표 3.5>에 나타난 것과 같다.
<표 3.5> Classes of Wind Power Density(10m,50m)(a)

<table>
<thead>
<tr>
<th>Wind Power Class</th>
<th>10 m (33 ft)</th>
<th>50 m (164 ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wind Power Density (W/m²)</td>
<td>Speed(b) m/s (mph)</td>
</tr>
<tr>
<td>1</td>
<td><100</td>
<td><4.4 (9.8)</td>
</tr>
<tr>
<td>2</td>
<td>100 - 150</td>
<td>4.4-5.1 (9.8-11.5)</td>
</tr>
<tr>
<td>3</td>
<td>150 - 200</td>
<td>5.1-5.6 (11.5-12.5)</td>
</tr>
<tr>
<td>4</td>
<td>200 - 250</td>
<td>5.6-6.0 (12.5-13.4)</td>
</tr>
<tr>
<td>5</td>
<td>250 - 300</td>
<td>6.0-6.4 (13.4-14.3)</td>
</tr>
<tr>
<td>6</td>
<td>300 - 400</td>
<td>6.4-7.0 (14.3-15.7)</td>
</tr>
<tr>
<td>7</td>
<td>>400</td>
<td>>7.0 (15.7)</td>
</tr>
</tbody>
</table>

주) (a) 풍속의 세로 위치는 1/7 에너지 범위에 의한 것이다.
(b) 평균 풍속은 같은 풍력 밀도에 대한 Rayleigh 속도 분포에 따른 것이다. 풍속은 표준해
면을 기본으로 한다. 에너지 밀도를 유지하기 위해 고도가 증가하면서 3%/1000 m
(5%/5000 ft)씩 풍속을 증가시킨다.26)

(Battelle Wind Energy Resource Atlas 참조)

(그림 3.4)는 풍력에너지밀도 분석결과를 간 주동별로 예측한 것이며 <표
3.6>, <표 3.7>, <표 3.8>은 각 주동형의 산별 풍력에너지밀도를 나타낸 것이다.
각 주동별 예측결과를 살펴보면, 5층형 주동의 경우 하절기의 풍속이 약하여 풍
력자원을 이용할 수 있는 시기는 2,3,4월 정도로 한정될것으로 보이며 풍력에너지
밀도도 30-40(W/m²) 정도로 낮은 수준이었다. 15층형 주동의 경우 5층형 비해 상
당히 증가하고 있는지만, 8-11월의 풍속이 3.5m/s 이하의 낮은 수준이었으
며 연중운전보다는 여름철을 제외한 기간동안에는 평균풍속 3.5-4m/s, 연동을
60%내외의 수준을 나타내고 있으며, 풍력에너지밀도 또한 50W/m² 이상 가능함
으로 분석되었다. 25층주동의 경우 풍속이 약한 8,9월에도 3m/s를 넘는 수치를
보이고 있다. 특히 겨울철부터 봄철까지인 1월-5월까지는 4m/s가 넘는 평균풍속

26) www. unep.or.kr/energy/korea/wind/win_intro.htm
www.awea.org/fag/basicwr.html
이 예측되었고 풍속의 변동을 또한 60%정도를 나타내고 있어 풍력발전시스템의
적용가능성이 높게 평가된다. 특히 3.4월의 풍력에너지밀도가 100W/m²까지 예측
되는 등 상당한 잠재력을 가지고 있는 것으로 분석되었다.

(그림 3.4) 각 층별 풍력에너지밀도

<표 3.6> 5층형주동 월별 풍력에너지밀도

<table>
<thead>
<tr>
<th>5층</th>
<th>최대풍속</th>
<th>평균</th>
<th>표준편차</th>
<th>분산</th>
<th>변동율(%)</th>
<th>풍력에너지밀도 (W/㎡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1월</td>
<td>15.13</td>
<td>3.08</td>
<td>1.97</td>
<td>3.86</td>
<td>63.77</td>
<td>29.06</td>
</tr>
<tr>
<td>2월</td>
<td>12.94</td>
<td>3.33</td>
<td>2.09</td>
<td>4.35</td>
<td>62.72</td>
<td>35.29</td>
</tr>
<tr>
<td>3월</td>
<td>14.49</td>
<td>3.52</td>
<td>2.08</td>
<td>4.33</td>
<td>59.09</td>
<td>40.24</td>
</tr>
<tr>
<td>4월</td>
<td>16.82</td>
<td>3.46</td>
<td>2.19</td>
<td>4.81</td>
<td>63.33</td>
<td>39.38</td>
</tr>
<tr>
<td>5월</td>
<td>12.94</td>
<td>3.14</td>
<td>2.01</td>
<td>4.05</td>
<td>64.11</td>
<td>30.55</td>
</tr>
<tr>
<td>6월</td>
<td>12.03</td>
<td>2.63</td>
<td>1.74</td>
<td>3.03</td>
<td>66.30</td>
<td>19.51</td>
</tr>
<tr>
<td>7월</td>
<td>12.29</td>
<td>2.74</td>
<td>1.91</td>
<td>3.66</td>
<td>69.73</td>
<td>22.27</td>
</tr>
<tr>
<td>8월</td>
<td>15.13</td>
<td>2.36</td>
<td>1.71</td>
<td>2.91</td>
<td>72.25</td>
<td>15.50</td>
</tr>
<tr>
<td>9월</td>
<td>14.49</td>
<td>2.21</td>
<td>1.60</td>
<td>2.57</td>
<td>72.69</td>
<td>13.10</td>
</tr>
<tr>
<td>10월</td>
<td>11.90</td>
<td>2.31</td>
<td>1.76</td>
<td>3.09</td>
<td>76.05</td>
<td>15.06</td>
</tr>
<tr>
<td>11월</td>
<td>12.94</td>
<td>2.57</td>
<td>1.80</td>
<td>3.24</td>
<td>70.08</td>
<td>18.89</td>
</tr>
<tr>
<td>12월</td>
<td>13.32</td>
<td>2.73</td>
<td>1.85</td>
<td>3.42</td>
<td>67.80</td>
<td>21.72</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300.57</td>
</tr>
<tr>
<td>월</td>
<td>최대풍속</td>
<td>평균</td>
<td>표준편차</td>
<td>분산</td>
<td>변동율(%)</td>
<td>폭력에너지밀도 (W/m²)</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>1</td>
<td>18.74</td>
<td>3.82</td>
<td>2.44</td>
<td>5.93</td>
<td>63.82</td>
<td>51.12</td>
</tr>
<tr>
<td>2</td>
<td>16.02</td>
<td>4.12</td>
<td>2.58</td>
<td>6.68</td>
<td>62.76</td>
<td>62.36</td>
</tr>
<tr>
<td>3</td>
<td>17.94</td>
<td>4.36</td>
<td>2.58</td>
<td>6.65</td>
<td>59.12</td>
<td>71.50</td>
</tr>
<tr>
<td>4</td>
<td>20.83</td>
<td>4.29</td>
<td>2.72</td>
<td>7.38</td>
<td>63.36</td>
<td>69.68</td>
</tr>
<tr>
<td>5</td>
<td>16.02</td>
<td>3.89</td>
<td>2.49</td>
<td>6.22</td>
<td>64.15</td>
<td>53.78</td>
</tr>
<tr>
<td>6</td>
<td>14.90</td>
<td>3.25</td>
<td>2.16</td>
<td>4.66</td>
<td>66.36</td>
<td>33.97</td>
</tr>
<tr>
<td>7</td>
<td>15.22</td>
<td>3.40</td>
<td>2.37</td>
<td>5.61</td>
<td>69.78</td>
<td>38.76</td>
</tr>
<tr>
<td>8</td>
<td>18.74</td>
<td>2.93</td>
<td>2.12</td>
<td>4.48</td>
<td>72.31</td>
<td>26.71</td>
</tr>
<tr>
<td>9</td>
<td>17.94</td>
<td>2.73</td>
<td>1.99</td>
<td>3.95</td>
<td>72.75</td>
<td>22.48</td>
</tr>
<tr>
<td>10</td>
<td>14.74</td>
<td>2.86</td>
<td>2.18</td>
<td>4.75</td>
<td>76.11</td>
<td>25.85</td>
</tr>
<tr>
<td>11</td>
<td>16.02</td>
<td>3.18</td>
<td>2.23</td>
<td>4.98</td>
<td>70.13</td>
<td>32.76</td>
</tr>
<tr>
<td>12</td>
<td>16.50</td>
<td>3.38</td>
<td>2.29</td>
<td>5.25</td>
<td>67.85</td>
<td>37.86</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>526.84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>월</th>
<th>최대풍속</th>
<th>평균</th>
<th>표준편차</th>
<th>분산</th>
<th>변동율(%)</th>
<th>폭력에너지밀도 (W/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.21</td>
<td>4.32</td>
<td>2.75</td>
<td>7.59</td>
<td>63.77</td>
<td>71.21</td>
</tr>
<tr>
<td>2</td>
<td>18.13</td>
<td>4.66</td>
<td>2.92</td>
<td>8.55</td>
<td>62.72</td>
<td>87.08</td>
</tr>
<tr>
<td>3</td>
<td>20.30</td>
<td>4.94</td>
<td>2.92</td>
<td>8.51</td>
<td>59.09</td>
<td>100.14</td>
</tr>
<tr>
<td>4</td>
<td>23.57</td>
<td>4.85</td>
<td>3.07</td>
<td>9.44</td>
<td>63.33</td>
<td>97.38</td>
</tr>
<tr>
<td>5</td>
<td>18.13</td>
<td>4.40</td>
<td>2.82</td>
<td>7.95</td>
<td>64.11</td>
<td>74.94</td>
</tr>
<tr>
<td>6</td>
<td>16.86</td>
<td>3.68</td>
<td>2.44</td>
<td>5.96</td>
<td>66.31</td>
<td>47.06</td>
</tr>
<tr>
<td>7</td>
<td>17.22</td>
<td>3.84</td>
<td>2.68</td>
<td>7.18</td>
<td>69.73</td>
<td>53.69</td>
</tr>
<tr>
<td>8</td>
<td>21.21</td>
<td>3.31</td>
<td>2.39</td>
<td>5.72</td>
<td>72.25</td>
<td>36.80</td>
</tr>
<tr>
<td>9</td>
<td>20.30</td>
<td>3.09</td>
<td>2.25</td>
<td>5.06</td>
<td>72.68</td>
<td>30.91</td>
</tr>
<tr>
<td>10</td>
<td>16.68</td>
<td>3.24</td>
<td>2.47</td>
<td>6.08</td>
<td>76.05</td>
<td>35.54</td>
</tr>
<tr>
<td>11</td>
<td>18.13</td>
<td>3.60</td>
<td>2.52</td>
<td>6.37</td>
<td>70.06</td>
<td>45.29</td>
</tr>
<tr>
<td>12</td>
<td>18.67</td>
<td>3.82</td>
<td>2.59</td>
<td>6.72</td>
<td>67.79</td>
<td>52.47</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>732.51</td>
</tr>
</tbody>
</table>
(5) 소결

서울 지역 공동주택단지에 풍력발전시스템의 적응가능성을 분석해보고자 기상청에서 임수한 최근 11년간의 홍황자료를 기초로 공동주택단지를 주동의 기속에 따라 유형을 분류하여 풍속보전후 풍력발전시스템의 적응가능성을 분석하여 얻은 결론은 다음과 같다.

5층주동의 경우 2, 3, 4층으로 풍력발전시스템적용이 한정적이거나, 15층주동단지의 경우 여름철을 제외한 시기는 적응이 가능한 것으로 나타났으며 25층주동단지의 경우 연중 풍력발전시스템의 가동에 적합한 풍속과 변동율을 나타내어 풍력발전시스템의 적응이 효과적일 것으로 예측되었다.

3.2 적응가능한 SYSTEM 고찰

3.1장의 분석결과를 바탕으로 공동주택단지내 풍속이 가장 높으며 난류발생이 적을 것으로 예상되는 지붕측에 풍력발전시스템이 설치되는 것으로 적응방향을 설정하였다. 지층부의 녹지지대, 공지등 또한 풍력발전시스템적용에 효과적일 것으로 예측되나 공동주택단지의 배치형상에 따라 다양한 기류분포를 나타내어 변수의 일반화가 어렵다. 따라서 본 연구에서는 공동주택단지내 풍력발전시스템의 적응방향을 지붕측에 설치하는 것으로 한정하였다.

3.2.1 상용화된 풍력발전시스템 고찰

온실가스의 증가를 유발하는 탄소 에너지의 소비를 줄이기 위해 무공해 풍력시장이 확장되면서 향후 5년동안 전세계 풍력시장이 매년 16%의 성장세를 보일 것으로 덴마크의 풍력에너지 시장 전문조사회사인 BTM사가 최근 산업동향 조사결과를 발표했다. BTM사는 조사결과에서 풍력시장이 전세계 에너지시장에서 차지하는 비율이 현재 1%에도 미치지 못하지만 온실가스의 양을 줄이기 위한

- 44 -
각국의 노력으로 향후 5년 동안 전세계 에너지 시장 가운데 가장 빠른 성장세를 보일 것으로 전망했다. 현재 세계의 풍력발전 시장은 풍력발전기 생산업체인 덴마크의 Vestas Wind Systems과 NEG Micon 그리고 독일의 Enercon 등 5대 업체가 전체의 75%를 차지한 것으로 나타났다.\(^\text{27)}\)

최근 풍력발전기는 250kW급을 위주로 개발되고 있고 500~1000kW급으로 대형화 추세에 있으나 소형 풍력발전기는 활용분야에 따라 충분한 이용가치가 있다. 10kW이하의 발전기는 축전기에 충전하는 시스템을 갖출 경우 광범위하게 이용이 가능한 독립전원이 된다. 소형 풍력발전 시스템은 발전기 본체와 타워, 축전기, 축전 제어기로 이루어지는데 축전 제어기는 축전기의 과충전을 방지하여 축전기의 수명을 유지한다. 용량과 풍속에 따라 여러가지 기종이 개발되어 있고 가격이 매우 저렴하여 상업전력이 들어갈 수 없는 산악지방이나 주말농장, 한시조명, 광고, 표시판 등에 태양전지와 같이 사용하여 매우 신뢰성이 높은 비상용 전원으로 가치를 발휘하고 있는 상황이다.

본 장에서는 3.1장의 풍속분석결과를 바탕으로 우리나라 서울지역 공동주택단지내 적용가능한 시스템을 문헌을 통해 고찰하였다. 앞서 중소형시스템이 적용가능한 것으로 나타났는데 중소형풍력발전시스템은 기동풍속과 정격풍속에 따라 다양한 제품이 상용화되어있다. 덴마크와 미국등이 중소형풍력발전시장에서 기술적으로 크게 앞서 있으나 최근 유럽의 경우 대형화와 해안풍력단지건설에 중점을 두어 중소형시스템의 경우 생산을 중단한 경우가 많다. 따라서 국내외 유수의 업체의 시스템과 정부주도로 시험가동중인 국내도입된 시스템, 또 최근 국내에서 개발되고 있는 시스템을 문헌과 자료조사를 통하여 고찰하였다.

\(^{27)}\) BTM Consultant ApS.
(1) 개요

풍력발전기는 로터지름과 경적출력량에 따라 다양한 시스템이 상용화되어있다. 터빈의 경적출력량은 주로 블레이드길이와 로터를 지나는 풍속에 따라 다르다. 풍력발전기는 경적출력량에 따라 다음과 같이 나뉜다.

- 소형(10kW급이하)
 - 주택, 농장 등에서 얕수나 소규모전력공급에 사용되며 독립식이 많다.
- 중형(10~250kW급)
 - village 전력공급, 주로 계통연계되어 사용된다.
- 대형(250kW~2MW급)
 - 대규모 풍력발전단지로 건설되며 분배전력시스템으로 활용된다.

풍력발전기의 성능은 전력생산곡선에 따라 달라지는데 이는 허브높이에서의 풍속에 따라 생산전력량이 달라진다. (그림 3.5)는 10kW급이하의 소형풍력발전기의 전력생산곡선을 나타낸 것이다. 28)

(그림 3.5) 소형풍력발전기의 출력곡선비교

풍력발전기는 전력을 생산하기 전에 전력생산을 위한 최소풍속이라 할 수 있는 cut-in speed를 필요로 한다. cut-in speed로 가동된 후 발전기의 생산전력은 풍속이 증가함에 따라 최고생산량에 다다를 때까지 급속히 증가한다. 풍력에너지는 풍속의 속도의 제곱에 비례하므로 풍력발전기는 낮은 풍속에서 보다는 높은 풍속에서 cut-out speed에 도달할 때까지 더 많은 양의 전력을 생산하게 된다. 대부분의 소형풍력발전기는 12-15m/s에서 최대전력을 생산하게 되며, cut-out speed에 도달할 때까지 최대전력을 생산하게 된다. 일반적으로 14-18m/s에서 cut-out speed가 결정되는데 높은 풍속에서의 과화전을 방지하여 터빈을 보호하기 위한 것으로 대부분의 소형풍력발전기는 cut-out speed에 도달하면 나셀과 로터를 접는다. cut-out speed 이후 풍력발전기의 발전성능이 0으로 멀어지는 것은 아니며 정격출력의 30-70%정도 유지된다.

풍력발전기는 특정풍속에서 정격출력이 이루어지는데 터빈의 정격출력풍속은 엔진별로 다소 차이를 나타내지만 대체로 10kW급의 경우 12m/s내외이다.

(2) Small Wind Turbine 외국 업체

미국은 대형풍력발전단지 뿐만 아니라 소형의 독립식 풍력발전시스템의 도입을 권장하며 다양한 지원방안을 통해 소형풍력발전시장을 육성하고 있다. 미국내 유수의 풍력발전업체는 다음과 같으며29) [표 3.9]는 각 업체들의 풍력발전기의 사양을 나타낸 예이다. 30)

- Atlantic Orient Corporation
- Bergey Windpower Co.
- Northern Power System
- Synergy Power Corporation
- WINDTech International
- Wind Turbine Indusrtries Corporation

<표 3.9> 중소형 풍력발전시스템 사양의 예

<table>
<thead>
<tr>
<th>Model</th>
<th>AIR-403</th>
<th>Windseeker503</th>
<th>whisper600</th>
<th>WT600</th>
<th>BWC850</th>
</tr>
</thead>
<tbody>
<tr>
<td>제조회사</td>
<td>Solar Energy Alliance</td>
<td>SWWP</td>
<td>WPT</td>
<td>PE</td>
<td>BWC</td>
</tr>
<tr>
<td>정격출력</td>
<td>300W</td>
<td>500W</td>
<td>600W</td>
<td>600W</td>
<td>850W</td>
</tr>
<tr>
<td>정격풍속</td>
<td>26.8mph (12m/s)</td>
<td>30mph (13.4m/s)</td>
<td>25mph (11.2m/s)</td>
<td>22mph (9.8m/s)</td>
<td>28mph (12.5m/s)</td>
</tr>
<tr>
<td>시동풍속</td>
<td>7 mph (3.0 m/s)</td>
<td>5mph (2.2m/s)</td>
<td>7mph (3.1m/s)</td>
<td>5-6mph (2.2-2.7m/s)</td>
<td>8mph (3.6m/s)</td>
</tr>
<tr>
<td>로터 지름</td>
<td>4.5ft (1.4m)</td>
<td>5ft (1.5m)</td>
<td>7ft (2.1m)</td>
<td>8.4ft (2.6m)</td>
<td>8ft (2.4m)</td>
</tr>
<tr>
<td>블레이드 재질</td>
<td>Fiberglass epoxy</td>
<td>Basswood</td>
<td>Injection molded polycarbonate</td>
<td>Fiberglass epoxy</td>
<td>Pultruded fiberglass</td>
</tr>
<tr>
<td>중량</td>
<td>13 lbs (6kg)</td>
<td>100+23lb (45.4+10.4kg)</td>
<td>150+40lb (68+18.1kg)</td>
<td>450+165lb (204.1+74.8kg)</td>
<td>240+86lb (108.7+39.6kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Whisper1000</th>
<th>BWC 1500</th>
<th>Whisper H1500</th>
<th>Jacobs Short</th>
<th>WT 2500</th>
</tr>
</thead>
<tbody>
<tr>
<td>제조회사</td>
<td>WPT</td>
<td>BWC</td>
<td>WPT</td>
<td>LMW&S</td>
<td>PE</td>
</tr>
<tr>
<td>정격출력</td>
<td>1000W</td>
<td>1500W</td>
<td>1500W</td>
<td>1500-2400W</td>
<td>2500W</td>
</tr>
<tr>
<td>정격풍속</td>
<td>25mph (11.2m/s)</td>
<td>28mph (12.5m/s)</td>
<td>28mph (12.5m/s)</td>
<td>18mph (8.0m/s)</td>
<td>26mph (11.6m/s)</td>
</tr>
<tr>
<td>시동풍속</td>
<td>7mph (3.1m/s)</td>
<td>8mph (3.6m/s)</td>
<td>7.5mph (3.4m/s)</td>
<td>6mph (2.7m/s)</td>
<td>5-6mph (2.2-2.7m/s)</td>
</tr>
<tr>
<td>로터지름</td>
<td>9ft (2.7m)</td>
<td>10ft (3.0m)</td>
<td>9ft (2.7m)</td>
<td>14ft (4.3m)</td>
<td>11.1ft (3.4m)</td>
</tr>
<tr>
<td>블레이드 재질</td>
<td>Fiberglass</td>
<td>Pultruded fiberglass</td>
<td>Fiberglass</td>
<td>Sitka spruce</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>중량</td>
<td>250+65lb (113.4+29.5kg)</td>
<td>375+168lb (170.1+76.2kg)</td>
<td>350+77lb (158.8+34.9kg)</td>
<td>750+450lb (340.2+704.1kg)</td>
<td>1124+440lb (50.9+199.6kg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Whisper3000</th>
<th>Whisper 4500</th>
<th>WT6000</th>
<th>Westwind10kW</th>
<th>Jacobs 29-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>제조회사</td>
<td>WPT</td>
<td>WPT</td>
<td>PE</td>
<td>Westwind</td>
<td>WTIC</td>
</tr>
<tr>
<td>정격출력</td>
<td>3000W</td>
<td>4500W</td>
<td>6000W</td>
<td>10kW</td>
<td>20kW</td>
</tr>
<tr>
<td>정격풍속</td>
<td>25mph (11.2m/s)</td>
<td>28mph (12.5m/s)</td>
<td>22mph (9.8m/s)</td>
<td>31.3mph (14m/s)</td>
<td>25.5mph (11.4m/s)</td>
</tr>
<tr>
<td>시동풍속</td>
<td>7mph (3.1m/s)</td>
<td>7.5mph (3.4m/s)</td>
<td>5-6mph (2.2-2.7m/s)</td>
<td>8.9mph (4.0m/s)</td>
<td>8mph (3.6m/s)</td>
</tr>
<tr>
<td>로터지름</td>
<td>14.8ft (4.5m)</td>
<td>14.8ft (4.5m)</td>
<td>18ft (5.5m)</td>
<td>(23ft)7m</td>
<td>29ft (8.8m)</td>
</tr>
<tr>
<td>블레이드 재질</td>
<td>Fiberglass</td>
<td>Fiberglass</td>
<td>Wood</td>
<td>Pultruded fiberglass</td>
<td>Sitka spruce</td>
</tr>
<tr>
<td>중량</td>
<td>700+155lb (317.5+70.3kg)</td>
<td>1000+180lb (453.6+81.6kg)</td>
<td>2248+948lb (1019.7+430kg)</td>
<td>500kg (1102.3kg)</td>
<td>2500+2300lb (2177.2kg)</td>
</tr>
</tbody>
</table>
<표 3.9>를 살펴보면, 1kW급이하의 초소형풍력발전기는 시동풍속이 2.2-3.6m/s, 정격풍속 10-13m/s, 로터지름이 1.1-2.4m 로 나타났으며, 1-10kW급의 소형풍력발전기는 2.7-3.6m/s의 기동풍속을 나타내며 로터지름은 2.7-4.3m수준이었다. 20kW급의 풍력발전기의 경우 로터지름 29ft(8.8m)로 커지지만 시동풍속은 정격출력이 낮은 소형시스템과 비슷한 수준을 나타내고 있었다. 블레이드의 재질은 대부분 fiberglass나 wood를 사용하고 있으며, 정격출력은 커질수록 중량또한 증가하고 있었는데 20kW급의 경우 약 2톤인 것으로 나타났다.

(3) 우리나라에 도입되어 시험운전중인 중소형풍력시스템

신재생에너지에 대한 실용성을 가시적으로 확인하기 위해 1993년도부터 한국에너지기술연구소가 제주 일렬에 풍력, 태양광 및 태양열 관련 시설을 설치하여 신재생에너지 시범단지를 조성함으로서, 우리나라에서도 본격적인 풍력발전에 의한 발전과 한전선로의 송전등 확장적인 전기가 마련되었다. 100kW 풍력발전기 1기와 30kW 풍력발전기 2기가 시범단지내에 설치되어 시험운전중이며 이외에도 1 단계의 사업기간중 한국과학기술연구원이 3년동안 소형(20kW) 수평축 풍력발전기를 국산화하려는 연구개발을 시도하였고, 사업 2단계중에는 복합재료 부착부의 개발을 주창하여 다리우스형(Darrieus) 수직축 300kW풍력발전기를 개발하려는 노력을 계속하고 있으나, 아직은 경험 부족과 국산화 공동협력 추진체계의 치밀성 부족 등으로 신뢰성을 확보하기에는 아직 미흡한 단계에 머물고 있다.

시범단지내 기존의 풍력발전시스템은 그 정격발전용량이 5kW, 14kW, 20kW로 소형급이었으며 이중 시설이 노후화된 5kW, 14kW급 풍력발전시스템은 철거하였고, 한국과학기술연구원에서 제작한 20kW급 풍력발전시스템의 장상작업을 포함해서 수행하고 있다. 또한 신재생에너지 시범단지내에 30kW급 풍력발전시스템 2대와 100kW급 풍력발전시스템 1대를 건설 완료하였다. 신재생에너지 시범단지내에 건설된 30kW 및 100kW 풍력발전시스템은 건설후 운전시간이 짧아 충분한 운영을 수행하지는 못하였지만, 건설후 1,811시간동안 운전된 30kW 풍력발전시스템에서는 10,778.5kWh, 450시간동안 운전된 100kW 풍력발전시스템에서는 17,600kWh의 전력을 생산하여, 향후 국내에서의 풍력발전단지 건설 가능성을 충분히 입증시켰다.
주었다.
그러나, 앞서 언급한 바와 같이 한국과학기술연구원에서 20kW급 계통연계용
풍력발전기의 국산화 개발 연구를 수행하고 있으며, 한국화이바(주)에서는
300kW 다리우스형 풍력발전기의 국산화 개발연구를 하였었고, 98년 현재수평축
500kW급 중형 풍력발전시스템개발을 진행중에 있으나 아직까지는 모든 연구개
발단계에 머물러 설용화까지는 상당시일이 소요될 전망이다.

또한 최근 난지도 생태공원내의 하늘공원에 풍력발전기가 설치되어 운전중이
다. 직경8m의 25kW급 5기의 풍력 발전기가 세워져 있어, 이 풍력발전기에서 생
산된 무공해 전기는 공원과 공원관리사무소의 전력으로 활용되고 있고 난지도
생태공원의 환경친화적 이미지심볼로서의 역할을 하고 있어 추후 중소형급 풍력
발전시스템의 적용가능성을 보여주고 있다.

(그림 3.6) 난지도생태공원의 25kW급 풍력발전기

(4) 국내에서 개발된 소형 풍력시스템

우리나라의 풍력발전기술연구는 동력자원연구소와 과학기술원 등이 주관하여
풍력 가용량이 풍부한 미전화 도서지방의 단위 전원 공급용으로 사용할 수 있는
소형 풍력발전 시스템의 개발 및 표준화를 위한 연구를 수행하여 왔다. 이를 위
하여 출력 2~20KW 급의 풍력발전시스템을 9개 지역을 대상으로 하여 시험운영
한 실험이 있고 1990년말 현재 3개 지역(대전, 제주도, 경기도 시외지구)에 모두
5기의 풍력발전소가 운영되고 있으며 추후 50KW급 이상의 풍력발전소의 설계,
제작기술을 축적하여 미전화 도서지방뿐만 아니라 내륙지방에서도 풍력단지를
조성하여 바람에너지의 이용을 극대화하려는 연구를 추진중이다.

제품으로서 상용화된 수준은 아니나 수직,수평축 통합형 차세대 풍력 발전기 가 전북대학교와 공동연구를 통하여 개발되었는데 현재 300W급에 대한 풍동설
험을 전북대학교 풍동실험실에서 성공적으로 완료하였으며, 2001년 3월 2일 부안
군 하서면 해창공원내에 30kW급 발전기를 성공리에 설치완료되었다. 또한 앞으
로 완공될 새만금 사업 단지내에 이 시스템이 설치 운용될 예정이다. 이 시스템
은 정격출력 30kW, 타워높이 20m, 로터길이 11m, 보조날개길이 5.5m로서 풍향
의 변동이 심한 우리나라의 풍향에 맞게 수직축과 수평축 풍력발전기를 통합한
시스템이다. 31)

(그림 3.7) 한국형풍력발전기

3.2.2 공동주택단지내 풍력발전시스템의 적용시 검토사항

풍력발전시스템을 건물에 적용시 몇 가지 환경적, 기기적 영향을 미칠수 있
다. 거주공간인 공동주택단지 건물에 적용시 시스템 자체로 인해 건물에 하중이나
소음, 경관등의 영향을 미칠수 있다. 따라서 본 절에서는 건물에 풍력발전시스템
적용시 고려사항을 시스템설치시 건물에 영향을 미칠수 있는 요인인 소음, 진동,
하중, 전파장해, 경관으로 분류하여 검토하였다.

31) www.kowintech.com/products/60kW.htm
(1) 소음, 진동

일반적으로 소음이란, 시끄러운 소리를 말한다. 그러나 소음진동규제법에서는 소음에 대한 정의를 ‘기계, 기구등에서 발생하는 강한 소리’에 한정하여 규제범위를 정하고 있다. 우리나라에서는 1970년대에 들어서면서 산업이 급격히 발전하면서 공장소음, 교통의 발달로 자동차의 시끄러운 소음, 비행기의 이착륙시에 발생하는 소음등에 시달리고 있다. 또한 음향기기, 확성기를 이용한 상업 및 광고, 피아노와 같은 악기의 사용, 텔레비전의 시청도 소음공해를 발생시키기도 한다. 요즈음 소음과 진동공해는 우리사회의 심각한 문제로 등장하고 있다. 소음은 청력, 대화, 수면, 작업능률 및 인체에 생리적인 영향을 끼치며, 소음속에서 오랜시간 동안 생활을 하거나, 짧은 시간 동안이라도 소음이 심한 곳에 있으면 어떤 형태로든 우리에게 좋지 않은 영향을 준다.

가. 풍력발전기의 소음특성

풍력발전으로 인한 소음은 다른 발전방식의 소음수준이나 특성에서 다소 차이를 나타낸다. 풍력발전기의 소음은 크게 공기역학적 소음(aerodynamic noise)와 기계적 소음(mechanical noise)로 나눌 수 있다.

공기역학적 소음은 바람이 블레이드를 통과하면서 발생한다. 로터속도에 따라 증가하는데 이러한 broadband noise는 터빈에서 발생하는 소음의 대부분을 차지한다. 또 난류성바람이 붐비 풍향이 바람에 따라 저주파수대의 소음이 발생하기도 한다.

기계적 소음은 발전시스템구성요소에 의해 발생한다. 기어나 베어링의 상태에 따라 기어박스내에서 tonal noise가 발생할수 있다.

보통 대형풍력발전단지는 교외의 소음과 관계없는 지역에 위치하므로 큰 문제가 되지 않았고 거주영역과 가까운 곳에 위치한 풍력발전기의 소음은 문제가 될 수 있으나 최근 기술의 급격한 발달로 풍력발전기의 소음은 크게 감소하였다.

일반적으로 풍력발전기는 대형풍력발전단지형태로 건설되고 전력공급이 어려운 미전화지역에 단독으로 설치되기 때문에 주택가와 멀리 떨어져있어 소음은 큰 문제가 되지 않았다. 최근 소음저감기술의 급격한 발달로 소음수준은 크게 낮아지고 있으나 공동주택단지내에 적용시에는 큰 소음이 발생하면 설치자체가 불
가능해진다.

그러나 현재 상용화되어있는 일반적인 소형풍력발전기는 53-55dB정도로 소음이 약한 편이며 주변지역에 큰 소음장해를 일으키지는 않는다. 풍력발전기제조업체는 타워에서의 거리에 따른 소음수준을 dB로 나타내어 표시하고 있으며 <표 3.10>은 미국 Bergey사의 10kW급 소형풍력발전기의 소음수준을 나타낸 것인데, 남동풍이 19-24mph(8.5m/s-11.7m/s)의 속도로 불고 있을때 풍력발전기의 운전여부에 따라 측정한 것이다.32)

<표 3.10> Bergey 사 10kW급 풍력발전시스템의 소음특성

<table>
<thead>
<tr>
<th>풍력발전기로부터의 거리</th>
<th>풍력발전기 운전</th>
<th>풍력발전기 운전하지 않은 (ambient noise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20ft (6.1m)</td>
<td>50.1dBA</td>
<td>45.7dBA</td>
</tr>
<tr>
<td>50ft (15.2m)</td>
<td>49.3dBA</td>
<td>45.8dBA</td>
</tr>
<tr>
<td>100ft (30.5m)</td>
<td>46.9dBA</td>
<td>48.1dBA</td>
</tr>
<tr>
<td>150ft (35.7m)</td>
<td>44.2dBA</td>
<td>44.4dBA</td>
</tr>
<tr>
<td>200ft (62m)</td>
<td>44.1dBA</td>
<td>44.3dBA</td>
</tr>
</tbody>
</table>

나. 소음관련 기준 및 법규 조사

풍력발전기의 적응대상이 되는 지역의 소음기준을 고찰하여 발전기를 선택하여야 하며 또 거리에 따라 소음은 급격히 감소하므로 이를 고려해야 한다.

우리나라의 환경소음진동 기준은 <표 3.11>과 같으며 지역구분별 적응대상지역의 구분은 <표 3.11>과 같다.

<표 3.11> 환경소음 진동기준

<table>
<thead>
<tr>
<th>구분</th>
<th>적용대상지역</th>
<th>환경기준dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>낮(06:00-22:00)</td>
<td>밤(22:00-06:00)</td>
</tr>
<tr>
<td>도로변지역</td>
<td>'가'지역 65</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>'나'지역 65</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>'다'지역 70</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>'라'지역 75</td>
<td>70</td>
</tr>
<tr>
<td>일반지역</td>
<td>'가'지역 50</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>'나'지역 55</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>'다'지역 65</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>'라'지역 70</td>
<td>65</td>
</tr>
</tbody>
</table>

32) 미국 Bergey 사가 제공한 10kW급 터빈의 소음측정자료
주)
◎ ‘가’ 지역
1) 국토이용관리법 제 6조의 규정에 의한 자연환경보전지역, 관광휴양지역 및 취락 지역중주거지구
2) 도시계획법 제 17조의 규정에 의한 녹지지역
3) 도시계획법조항 제 15조의 규정에 의한 전용주거지역
4) 의료법 제 3조의 규정에 의한 종합병원의 부지경계에서 50미터 이내의 지역
5) 교육법 제 81조의 규정에 의한 학교의 부지경계에서 50미터 이내의 지역
◎ ‘나’ 지역
1) 국토이용관리법 제 6조의 규정에 의한 취락지역중 주거지구외의 지구
2) 도시계획법조항 제 15조의 규정에 의한 일반주거지역 및 준주거지역
◎ ‘다’ 지역
1) 도시계획법 제 17조의 규정에 의한 상업지역
2) 도시계획법조항 제 15조의 규정에 의한 준공업지역
◎ ‘라’ 지역
1) 도시계획법조항 제 15조의 규정에 의한 일반공업지역 및 전용공업지역
2) 국토이용관리법 제 6조의 규정에 의한 공업지역
‘도로’라 함은 1종업의 자동차(2륜자동차를 제외한다)가 안전하고 원활하게 주행하기 위하여 필요한 일정 폭의 차선을 가진 2차선 이상의 도로를 말한다.
이 소음환경기준은 철도소음, 항공기소음 및 건설작업소음에는 적용하지 아니한다.

생활소음진동 규제기준은 <표 3.12>와 같으며 다음의 조건에 준한다.
1) 욕외에 설치한 확성기의 사용은 1회 2분이내, 15분이상 간격을 두어야 한다
2) 공사장이 소음·진동규제기준은 주간의 경우 1일 최대작업시간이 2시간 이하일때는 +10dB를, 2시간초과 4시간 이하일때는 +5dB을 규제기준치에 보정 한다.
3) 소음 - 조성 : 05:00-08:00/18:00-22:00, 주간 : 08:00-18:00,
심야 : 22:00-05:00
4) 진동 - 주간 : 06:00-22:00, 심야 : 22:00-06:00
<표 3.12> 생활소음진동 규제기준

<table>
<thead>
<tr>
<th>대상지역</th>
<th>소음dB(A)</th>
<th>진동dB(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>시간별</td>
<td>조석</td>
</tr>
<tr>
<td>주거지역, 녹지지역, 주도시지역중 취락지구 및 운동·휴양지구, 자연환경보전지역, 기타 지역안에 소재한 학교·병원·공공도서관</td>
<td>확성기</td>
<td>60이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>욕외설치</td>
</tr>
<tr>
<td></td>
<td></td>
<td>욕내에서 욕외로 소음이 나오는 경우</td>
</tr>
<tr>
<td></td>
<td></td>
<td>공장·사업장</td>
</tr>
<tr>
<td></td>
<td></td>
<td>공사장</td>
</tr>
<tr>
<td>기타지역</td>
<td>확성기</td>
<td>60이하</td>
</tr>
<tr>
<td></td>
<td></td>
<td>욕외설치</td>
</tr>
<tr>
<td></td>
<td></td>
<td>욕내에서 욕외로 소음이 나오는 경우</td>
</tr>
<tr>
<td></td>
<td></td>
<td>공장·사업장</td>
</tr>
<tr>
<td></td>
<td></td>
<td>공사장</td>
</tr>
</tbody>
</table>

국내 건축법상의 소음진동기준을 살펴본 결과 공동주택단지에서는 가, 나 지역에 속할 수 있는지 지역의 기준은 다음과 같이 주간에는 50~65dB, 야간에는 40~55dB 수준을 적용하는 것을 원칙으로 하고 있으므로 풍력발전시스템의 선정시 이를 고려해야 하는 소음기준을 <표 3.13>에 정리하였다.

<표 3.13> 공동주택단지내 소음기준

<table>
<thead>
<tr>
<th>구분</th>
<th>적용대상지역</th>
<th>환경기준dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>낮(06:00-22:00)</td>
</tr>
<tr>
<td>도로변지역</td>
<td>'가'지역</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>'나'지역</td>
<td>65</td>
</tr>
<tr>
<td>일반지역</td>
<td>'가'지역</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>'나'지역</td>
<td>55</td>
</tr>
</tbody>
</table>

주)
◎ '가'지역
1) 국토이용관리법 제 6조의 규정에 의한 자연환경보전지역, 관광휴양지역 및 취락 지역중추거지구
2) 도시계획법시행령 제 15조의 규정에 의한 전용중추거지
◎ '나'지역
1) 도시계획법시행령 제 15의 규정에 의한 일반중추거지역 및 준중추거지역
상용화된 시스템의 소음특성과 국내 소음기준을 고찰한 결과 상용화된 소형풍
력발전시스템의 소음수준은 50-55dB 로 나타나 공동주택내 소음기준과 비슷한
수준을 나타내고 있으며, 풍력발전기의 블레이드 소음이 ambient noise의 5dB 이
하의 차이를 나타내고 있어 공동주택단지내 풍력발전기의 소음은 문제가 되지
않을것으로 나타났다.

(2) 하중

하중의 제한이 건물의 풍력발전시스템적용에 어떤 영향을 미치는가를 규명하
기 위하여 우선 하중의 종류를 규정한다. 하중에는 고정하중, 적재하중, 적설하
중, 풍하중, 지진하중이 있는데 이중에 고정하중은 건물자체의 무게이므로 고려
의 대상이 되지 않고 나머지 하중들은 건물이 완공된 후 구조체에 가해지는 압
력들이다. 적설하중, 풍하중, 지진하중은 현행 건축법규에 의하여 위의 자연현상
에 최대한으로 저항할 수 있게 건축물이 설계, 시공되고 있다.
적재하중은 사후에 건물의 구조에 인위적으로 가해지는 무게로서 물건과 사람
이 그 대상이다. 그러므로 풍력발전시스템은 적재하중으로 분류될 수 있다.
공동주택의 옥상구조는 크게 평지붕과 경사지붕으로 나누어지는데 중소형 풍
력발전시스템의 경우 앞서 고찰한 바와 같이 기초면적 1m²당 하중을 고려하여
시스템의 선정이 이루어져야 한다. 20kW급이 가장 큰 하중을 나타냈는데 기초면
적 7.5m², 2ton이며 266kg/m²으로 나타나 욕상플라자 설치시의 구조기준에도 크게
못미치는 수준이었으며, 공동주택의 적재하중 산정시 가장 큰 하중부담을 갖는
넓각탑 1.5ton과 비슷한 수준을 나타내어 기존건물의 제한된 하중지지능력을 높
이기 위하여 기둥과 보 또는 슬라브를 보강은 필요치 않을 것으로 사료된다.
현재 우리나라에서 지어지는 건축물의 옥상은 최소한 해표 3.14와 같은 적재
하중을 기준으로 설계되도록 되어있다.
(표 3.14) 건축물의 구조기준 등에 관한 규칙

사무실・학교・주거용 건축물	200kg/m²
옥상플라자・테라스・옥상정원	500kg/m²
적재물이 거의 없는 옥상	100kg/m²
30°이상 경사지붕・곡면지붕	80kg/m²
헬리콥터 정착장	500kg/m²

(출처 : 건설교통부령 제 53호 제 11조 1항 별표)

(3) 전파장해(Electromagnetic Interference : EMI)

고정되거나 움직이는 구조물은 TV나 라디오의 전파수신을 방해할 수가 있다. 대형구조물인 풍력발전기는 수산기상등에 전자기적 방해를 일으킬 수 있다. 또한 풍력발전기의 로터블레이드는 전파에 영향을 미치 주변의 전자기신호가 블레이드의 통과주파수에 장해를 일으킨다. EMI(전파장해)의 정확한 특성과 전파장해 수준은 여러 가지 변수에 따라 달라지는데 제일 기초적인 변수는 라디오나 TV 수신탑과 풍력발전기의 위치관계, 로터블레이드의 물리적 전기적 특성, 수신전파의 주파수변조방식, 그리고 그 지역의 고주파수대 전자기파동의 특성 등이다. 주로 대형풍력발전기는 전파장해가 큰 편이며 금속재질의 블레이드가 전파장해를 일으키는데 소형이나 최근 개발된 목재, 섬유유리(fiberglass)로 제작된 블레이드는 일반적으로 전파장해를 일으키지 않으므로 공동주택 적용시에도 전파장해 측면에서는 문제가 없을 것으로 예측된다.

(4) 경관

풍력발전기는 산업체별로 다양한 디자인이 나와있으므로 건물에 적용시 건물의 풍경성과 연계된 디자인전략이 필요하다. 풍력발전시스템이 단지전체에서 랜드마크적 역할을 할수 있어 주차동과 연계되어 그 디자인전략을 강하게 표현할수 있다. 또한 주위건물과의 통일성을 있는 배치를 통해 단지전체에 활력을 붙여 넣어줄수 있는 디자인전략이 가능하다. 특히, 풍력발전기는 그 형상만으로도 환경친화적인 이미지를 연상시켜 최근에 주목받고 있는 전환경주거단지로서의
성격부여에 큰 역할을 할 수 있을 것으로 예측된다. 특히 공동주택단지내 풍력발전시스템의 적용시 일반 시민, 특히 어린이들에게 환경친화에 관한 교육, 홍보 효과를 크게 발휘할 수 있다.

3.3 공동주택단지의 건축적 특성에 따른 풍력발전시스템의 배치계획

공동주택 단지내 풍력발전시스템의 적용시 공동주택의 건축적 특성이 풍력발전시스템에 미치는 영향에 의하여 풍력발전시스템의 배치계획을 고찰하였다.

공동주택단지의 건축계획적 특성 및 주변환경에 따라 풍력발전시스템의 적응 방법은 크게 달라진다. 즉 지중부의 녹지지대, 공터비율 및 주변건물의 주풍향과의 상관관계에 따라 풍력발전시스템의 효율이 달라진다. 지중부의 녹지지대, 공터 등은 풍력발전시스템 적용에 효과적인 것으로 예측되나 공동주택단지의 배치형상에 따라 다양한 기류분포를 나타낼 것이다. 따라서 공동주택단지내 풍속이 가장 높으며 난류발생이 적을 것으로 예상되는 지붕측에 풍력발전시스템이 설치되는 것만으로 가정하였다.

공동주택 단지내에 풍력발전시스템을 적용하기 위해서는 풍속과 풍향등의 풍속자원 뿐만아니라 시스템에 의한 환경적, 기기적 영향을 고려해야 한다. 풍력발전시스템은 주변의 건물이나 식생등 바람의 장애물이 될 수 있는 요소에 의해 발생한 난류의 영향을 받을 수 있다. 이러한 난류의 발생이 심한 곳에 시스템이 설치되었을 때 그 성능이 크게 떨어질 수 있으며 기기의 고장이나 운전이 불가능할 수 있다. 또한 풍력발전시스템은 건물에 적용시 시스템 자체로 인해 건물에 하중이나 소음, 환경등의 영향을 미칠 수 있다. 따라서 본 절에서는 건물에 풍력발전시스템 적용시 고려사항을 건물에 의한 기류의 변화에 따라 검토하였다.
바람은 건물이나 수목등에 의해 속도와 방향이 변하게 된다. 공동주택 단지내 전면건물에 의해 풍속저하염이 발생하게 되며 난류 또한 증대되어 풍력발전시스템의 효율적 운전이 이루어질수 없게된다. 따라서 본 절에서는 공동주택 단지내 적용된 풍력발전시스템의 효과적 운전을 위하여 건물에 의한 기류변동에 따라 입면과 평면상의 적용방식으로 나누어 고찰하였다.

3.3.1 입면상 배치계획

wind shade를 고려하여 건물 장단면비에 따라 hub 높이가 결정된다.

고층건물이 세워지면 건물주위의 기류가 크게 변화하게 된다. 건물주위의 기류는 건물배치형상, 건물형태에 따라 각각 다르다. 풍력발전시스템은 난류가 적은 높이에 설치되어야 안정된 바람을 통해 전력생산이 가능하다. 건물상부의 난류발생은 건물의 장단면비에 의해 결정되는데 일반적으로 작용면체 건물주위의 기류형상은 (그림 3.8)과 같이 나타난다.33)

![그림 3.8 작용면체 건물주위의 기류형상](image)

33) 이정일, 자연풍을 활용한 공동주택 배치형태에 따른 풍속분포에 관한 연구, 수원대 석사논문, 2000, p.22.
건물주위의 난류발생이 적은 높이를 산정하여 폭력발전시스템의 최소 Hub 높이를 결정하기위해 (식 3.3)을 사용하였다.

(식 3.3)

여기서 H는 건물높이, W는 건물길이를 나타낸다.

따라서 공동주택단지에 폭력발전시스템을 적응시킬때는 주동의 높이와 길이에 따라 건물상부의 난류발생이 없는 높이에 Hub 높이가 결정되어 시스템을 설치한 다.

</표 3.15>은 5층형, 15층형, 25층형 주동의 장단비별 적정 허브높이를 산정한 예를 나타낸 것이다. (그림 3.9)의 편복도형의 국민주택규모(전용면적 85㎡)의 전
면3실형으로 각 실의 크기에 대해 각실의 평균크기를 안방 17.73㎡, 거실 16.49
㎡, 자녀1방 11.14㎡, 자녀2방 9.7㎡ 및 각 실의 길이 및 폭의 평균값을 참고하여
산출한 평면형34)을 바탕으로 단위세대 조합별로 선택하여 예시한 것이다.
<표 3.15> 편복도형의 단위세대조합수에 따른 적정 Hub 높이

<table>
<thead>
<tr>
<th>구분</th>
<th>간물높이(지붕까지)</th>
<th>간물길이(단위주호개수에 따른)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4개(44m)</td>
<td>6개(66m)</td>
</tr>
<tr>
<td>5층형</td>
<td>23m</td>
<td>9.5m</td>
</tr>
<tr>
<td>15층형</td>
<td>49m</td>
<td>13.9m</td>
</tr>
<tr>
<td>25층형</td>
<td>75m</td>
<td>17.2m</td>
</tr>
</tbody>
</table>

3.3.2 평면상 배치계획

: 로터직경에 따라 시스템간 적정이격거리를 산정한다.

풍력발전시스템은 바람의 운동에너지를 이용하여 전력을 생산하는 것으로 블레이드를 통과한 바람은 초기에너지의 약 59%정도가 저하되어 40.7%만을 가지게 된다. 이러한 에너지저하가 다시 회복되어 다른 시스템에 영향을 미치지 않기 위해서는 주풍향에 대해 적당한 이격거리를 유지해야하며 이러한 이격거리가 전력생산량에 영향을 미칠 수 있다. 이격거리는 설치지역, 풍향, 풍속과 풍력발전기의 사양에 따라 달라진다.

(그림 3.10) 풍력발전시스템을 통과한후 변화되는 에너지량

(1) 엽배치

풍력발전기가 주풍향에 대해 엽배치형태로 설치될때 최적의 이격거리는 주풍향에 대해 평균로 로터지름의 5~9배, 횡렬로 로터지름의 3~5배이다. 35) 예를 들면,

35) www.windpower.org/tour/wres/park.htm
500kW급의 풍력발전기 20대가 설치되는 풍력단지는 보통 1-2km의 면적을 필요로 하게된다. 여기서 수%만이 설치면적으로 사용되며 그 외의 용지는 원래의 용도로 사용할 수 있게된다. 즉 전력부하량에 따라 크게 달라지는 풍력발전기의 설치대수에 따라 설치면적이 결정되게 된다.

공동주택단지내 풍력발전시스템을 지붕층에 설치하게 되면 각 주동간의 인동거리에 따라 로터지름이 적은 시스템을 선택하거나 로터지름이 컸지만 이격거리가 커지게 되므로 공동주택단지내 시스템의 설치시에는 주동사이의 인동거리와 선정시스템의 로터지름에 따라 설치대수와 전력생산량이 결정되게 된다.

![그림 3.11) 엽배치시 풍력발전기의 이격거리](RD:Rotor Diameter)

즉 5층형, 15층형, 25층형일때 건축법규에 따라 인동거리가 결정되므로 이에 따라 시스템의 로터지름이 결정될수 있다. 엽배치계획시 주동층수에 따른 인동거리와 시스템의 로터지름의 상관관계를 나타낸 것이 <표 3.16>이다.

공동주택의 인동거리에 관련된 기준으로는 건축법 제53조(일조동의 확보를 위한 건물물의 높이제한)에서 그 기준을 찾을수 있으며 서울시 조례에서 규정하고 있는 공동주택의 일조권기준 내용은을 살펴보면, 아파트 단지내 인동간격은 2동 이상 건축물의 채광창등이 서로 마주보는 경우(인동거리)는 건축물 각 부분 높이의 1배이며, 공동주택 단지내 인동간격 완화기준중 16층 이상 탑상형은 건물 높이의 0.8배, 정남북방향 건물높이의 1배로 규정되어 있다. 따라서 층수에 따라 위의 기준을 적용하여야산출하였으며, 각 인동거리와 로터지름의 관계는 <표
3.9>와 같다.

<표 3.16> 주동층수별 인동거리와 로터지름의 상관관계(各样배치계획시)

<table>
<thead>
<tr>
<th>인동거리</th>
<th>횡열배치시 로터지름(m)</th>
<th>종열배치시 로터지름(m)</th>
<th>적정로터지름(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5층형(23m)</td>
<td>23m</td>
<td>4.6-7.6</td>
<td>2.6-4.6</td>
</tr>
<tr>
<td>15층형(49m)</td>
<td>49m</td>
<td>9.8-16.3</td>
<td>7-9.8</td>
</tr>
<tr>
<td>25층형(75m)</td>
<td>60m</td>
<td>12-20</td>
<td>6.6-12</td>
</tr>
</tbody>
</table>

(2) 평행배치

풍력발전기가 종열, 횡열로 평행하게 배치될 때는 이격거리가 얇배치와 달라지게 된다. 평행배치시에는 주풍향에 대하여 종열로 로터지름의 8-12배, 횡열로 로터지름의 2-4배가 최적이며, 36) (그림 3.12)는 평행배치형상을 나타낸 것이다.

![그림 3.12] 평행배치시 풍력발전기의 이격거리
(RD: Rotor Diameter)

<표 3.17>은 평행배치의 주동층수에 따른 인동거리와 로터지름의 상관관계를 나타낸 것이다.

<표 3.17> 주동층수별 인동거리와 로터지름의 상관관계(평행배치계획시)

<table>
<thead>
<tr>
<th></th>
<th>인동거리</th>
<th>횡막배치시 로터지름(m)</th>
<th>종열배치시 로터지름(m)</th>
<th>적정로터지름 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5층형(23m)</td>
<td>23m</td>
<td>5.7-11.5</td>
<td>1.9-2.9</td>
<td>1.9-2.9</td>
</tr>
<tr>
<td>15층형(49m)</td>
<td>49m</td>
<td>12.25-24.5</td>
<td>4-6.1</td>
<td>4-6.1</td>
</tr>
<tr>
<td>25층형(75m)</td>
<td>60m</td>
<td>15-30</td>
<td>5-7.5</td>
<td>5-7.5</td>
</tr>
</tbody>
</table>

풍력발전기의 양배치계획시와 평행배치계획시의 각 주동의 측수에 따른 적정 로터지름을 산출한 결과, 배치계획시 로터지름은 주풍향에 대하여 종열배치시의 적정지름에 의하여 결정되며 양배치시 로터지름이 더 크게 나타나 풍력발전기는 로터의 회전면적에 비례한다는 출력특성상 양배치시가 더 유리할 것으로 나타났다. 따라서 풍력발전기의 배치계획을 결정할 때는 공통주택단지내 주동의 배치형태와 인공간격에 따라 최대전력량을 생산할 수 있는 방향으로 배치계획을 결정하며, 로터지름과 인동거리에 따라 다양한 방안이 도출될 수 있다.

3.4 공동주택단지내 풍력발전시스템의 설계 Process 설정

본 절에서는 공동주택단지내 풍력발전시스템의 적용을 위한 분석내용을 바탕으로 공동주택단지의 건축적 특성과 풍력발전시스템의 특성으로 구분하여 공동주택단지내 풍력발전시스템의 설계 Process를 제시하였다.

이 Process는 공동주택단지의 건축적 특성과 풍력발전시스템의 시스템특성에 따라 각 단계별로 대상분석, 설계목표설정, 풍력발전시스템의 배치계획으로 나누어 위계를 분류하여 순차적으로 제시한 것이다. 각 단계별로 건축적 특성과 시스템특성의 상호관계를 고려하여 작성하였다.

(그림 3.13)은 공동주택단지내 풍력발전시스템의 설계 Process를 나타낸 것이며 각 단계별 내용은 다음과 같다.
(1) 대상설정

공동주택단지에 풍력발전시스템의 적용여부를 결정하기 전에 공동주택단지의 건축적 특성에 의한 Zoning과 기후분석을 통하여 적용가능성여부를 결정한다. 적용이 가능한 것으로 분석되면 공동주택단지의 건축적 특성과 기후분석결과에 따라 풍력발전시스템의 사양을 결정하게 된다.

가. 공동주택단지의 건축적 특성에 의한 Zoning

풍력발전시스템의 영향을 미치는 직접적 인자는 풍속과 풍향이다. 따라서 공동주택단지의 건축적 특성 중 기류패턴과 관련된 주동형태, 주동높이(층수), 단지내 주동배치형태에 따라 단지의 Zone을 구분하여 적용영역을 설정한다. 주동층수와 주동형태(장단변비)에 따라 비슷한 규모의 주동별로 영역 영역을 설정한다.
나. 기후분석

선정된 공동주택단지의 홍수특성을 조사하여 앞서 구역된 Zone 별로 기후분석
을 수행하여 풍력발전시스템의 적용가능성을 분석한다. 적용이 가능한 것으로 결
정되면 기후분석 결과에 따라 최적의 시스템을 선정하고 각 Zone 별 시스템의
출력량을 정량적으로 분석한다.

(2) 설계목표 설정

대상분석이 이루어져 풍력발전시스템의 적용이 결정되고, 적정 풍력발전시스템
의 사양이 결정된 후 공동주택단지의 전력부하를 분석하여 설계목표를 설정한다.

가. 공동주택단지내 전력부하분석

풍력발전시스템은 건물에 적용시 시스템 자체로서 직접적으로 전력을 생산하
며 기존 계통전력과의 연결이 용이하여 공동주택단지의 전력부하를 직접적으로
담당할 수 있다. 따라서 선정 공동주택단지의 전력부하를 분석하여 공공전력, 세대
내 전력 등의 유형에 따라 전력소비량을 예측하여 각 유형별로 정량적으로 분석
한다.

나. 풍력발전시스템의 담당부하 결정

각 유형별로 정량적으로 분석된 공동주택단지의 전력부하를 선정된 풍력발전
기의 출력량과 비교하여 풍력발전시스템으로 담당하게 될 전력부하 유형을 결정
하며, 이를 설계목표로서 설정한다.

(3) 풍력발전시스템의 공동주택단지내 배치계획

가. 전력부하 유형 및 풍력발전시스템의 사양에 따른 대수 산정

선정된 풍력발전시스템의 사양과 기후분석에 따른 출력량에 의해 설계목표로
선정된 공동주택단지내 담당전력부하량을 만족시킬 수 있는 풍력발전시스템의 대

- 66 -
수를 산정한다.

나. 공동주택단지의 건축적 특성에 따른 풍력발전시스템의 단지내 배치계획

산정된 풍력발전시스템의 사양과 대수에 따라 공동주택의 Zone 별로 배치계획을 세운다. 공동주택단지내 배치시 입면상 배치계획과 평면상 배치계획으로 나누어 고려해야 한다.

i. 입면상 배치계획

입면상 배치계획에서는 지붕축설치시 건물에 의한 난류의 영향이 적은 높이를 산정하여 최소 Hub 높이를 결정한다.

ii. 평면상 배치계획

평면상 배치계획에서는 선정된 풍력시스템의 로터지름에 따라 달라지는 시스템간의 적정이격거리의 고려하여 배치한다. 공동주택단지내 적정이격거리는 지붕축 설치를 가정했을때 주동간의 인동간격에 의해 결정되므로 주동의 배치형태와 인동거리에 따른 적정이격거리를 고려하여 평면상 배치계획을 결정한다.

(4) 계획안 결정

대상분석과 설계목표설정에 따른 풍력발전시스템의 공동주택단지내 배치계획 단계를 순차적으로 수행하여 공동주택단지내 풍력발전시스템 적용안을 결정한다.
제 4장 공동주택단지내 풍력발전시스템의 적용사례

제안한 공동주택단지내 풍력발전시스템 설계 Process에 따라 공동주택단지를 선정하여 사례분석을 실시하였다. 서울시내 공동주택단지를 선정하였으며, 제안한 Process의 단계에 따라 대상공동주택 단지를 건축적 특성에 따라 Zoning을 한 후, 기후분석결과와 풍력발전시스템의 공동주택단지내 적용시의 검토사항을 고려하여 성공확률 시스템을 선정하였다. 대상공동주택단지내 전력부하량 분석에 따라 풍력발전시스템의 담당부하를 결정하여 설계목표를 설정하였으며, 전력부하 유형과 풍력발전시스템사양에 따른 풍력발전시스템의 단지내 배치계획을 실시하였다.

4.1 대상분석

풍력발전시스템의 적용안으로 선정된 대상은 서울시내 새롭게 개발되고 있는 난지도재개발구역 상암 3공구 현상설계안으로서 친환경설계로 그린빌딩인증을 받았으며, 여기에 대체에너지인 풍력발전시스템의 적용이 첨가된다면 친환경 건축으로서의 특성이 더욱 증대될것으로 사료된다.

4.1.1 대상 공동주택단지의 Zoning

(1) 대지현황분석

서울의 새로운 부도심으로 서울 도심에서 7km, 신촌에서 4km지점에 위치하고 있으며 2002년 월드컵경기를 통해 낙후되었던 지역의 회복 및 도약을 상정하는 공간이다. 사회쟁의 변화에 따른 환경문제에 대한 관심이 고조되고 있으며 환경의 오염과 자연환경의 파괴의 상정이 되어왔던 난지도 일대를 생태적으로 건강하게 재생하고 복원하는 것은 환경시대인 새천년의 주요과제라 할수 있으며 선정공동주택단지의 경우 그 성격에 맞게 친환경설계를 주개념으로 삼고 있다.
동심원을 그리는 서울의 녹지체계로 불산, 서초, 광산의 산세가 상암으로 얻기는 형상으로 기존 지형은 인왕산, 대덕산, 망월산, 남서로 둘러싸인 분지형태이다.

(그림 4.2) 선정공동주택단지의부지현황

(2) 풍력발전시스템의 적용을 위한 기존 디자인개념 고찰을 통한 영역설정 (Zoning)

가. 설계개요

<표 4.1>은 선정공동주택단지의 블록단위별 설계내역을 나타낸 것으로 대지면적 23만㎡, 총 4233세대로서 Zone 1인 1블럭과 2블럭은 1300여세대로 구성되어 있으며, Zone 2인 3블럭과 4블럭은 2000여세대, Zone 3인 5블럭은 900여세대로 구성되어 있다. 전재단지의 녹지면적율은 57.0%이며 데크를 이용하여 주차를 해
결하고 있는데 지하주차비용을 전체주차대수의 약 50%를 차지하고 있다.

<표 4.1> 선정공동주택단지의 설계개요

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>내역</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>계</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>아파트</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>단지</td>
<td>타로</td>
<td>이용계획</td>
<td></td>
</tr>
<tr>
<td>면적</td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>건축면적</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>건폐율</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>융적률</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>조경면적비율</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>건설</td>
<td>계</td>
<td>세대</td>
<td></td>
</tr>
<tr>
<td>호수</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42평</td>
<td>세대</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12평</td>
<td>세대</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15평</td>
<td>세대</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>25평</td>
<td>세대</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32평</td>
<td>세대</td>
<td></td>
<td></td>
</tr>
<tr>
<td>주차</td>
<td>계획</td>
<td></td>
<td></td>
</tr>
<tr>
<td>대수</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>법정</td>
<td>m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>소재</td>
<td>대</td>
<td>1,411</td>
<td>610</td>
</tr>
<tr>
<td>지상</td>
<td>대</td>
<td>327</td>
<td>327</td>
</tr>
<tr>
<td>지하</td>
<td>m²/대</td>
<td>2638</td>
<td>519</td>
</tr>
</tbody>
</table>

나. 전체배치

모든 주로에서 상암산이 조망되도록 주동이 배치되어 있으며, 북한산, 양원산, 대덕산, 한강 등의 주변 조망성을 고려하여 설계되었다. 상암산에서 주변을 향하여 저층에서 고층 주거동이 배치되어 자연스러운 스카이라인을 형성하고 있으며, 지역 주변으로 도시적 문맥에 맞는 탑상형의 고층 주거동이 배치되어 있다. 각 진입로 상에 콘크리트 타워동이 배치되어 있다.

다음 (그림 4.3)은 단지내 전체배치형상을 나타낸 것이다.
(그림 4.3) 선정공동주택단지 전체 배치도
다. 영역설정(Zoning)

주동의 충수와 배치형태에 따라 중저층, 초고층주동으로 구성되며 일렬배치형식인 Zone 1과 중고층주동의 방사형 배치형식인 Zone 2, 6층형인 저층주동으로 형성된 Zone 3으로 구분하였다. (그림 4.4)는 각 Zone의 영역을 나타낸 것이다.

![그림 4.4) 선정공동주택단지의 영역설정](image)

① Zone 1: Urban

길이 있는 마을이라는 주제하에 주변의 DMC 맷락을 받아들여 도시성의 강한 도시주거를 형성하고 있다. 전체단지의 5개의 블록으로 구성되어 있는데 1, 2블록은 Zone 1로 분류하였다. 도로전면부의 25층형의 고층타워형 주동이 배치되어 있으며, 단지안쪽으로 5-6층형과 15층형의 주동이 조합되어 배치되어 있다. 단지내 터치형 특성으로는 2법칙 중간에 도약의 관문이 터드마크로서 설치되어 있으며 1법칙과 2법칙사이의 18m 차량도로와 저층형주동전면으로 보도가 강한 축을 형성하고 있다.

② Zone 2: Friendly

물이 있는 마을이라는 개념으로 설계되어 자연과 도시 사이에 형성되는 녹지가 풍부한 전원동의 주거단지를 형성하고 있다. 전체단지중 3,4블록이 이루어져 Zone을 형성하고 있으며 3과 4블록을 나누는 18m 도로를 중심으로 방사형으로 뻗어있는 형태로 주동이 배치되어 있다. 전체적으로 13-17층형의 중층형 주동으로 이루어져 있으며 새천년근린공원과 연결된 보도축이 4법칙을 관통하고 있다.

③ Zone 3: Eco

설계개념이 연덕이 있는 마을로서 자연을 받아들이고자 새로운 자연을 창출하
는 장소로서의 단지를 형성하고 있다. 세천년근린공원과 연결된 보도축이 단지를 양분하고 있는데 남서측면에 전면 50m도로, 북서측면에 전면 35m 도로가 있으 며, 주로 6층형의 지층주동으로 구성되어 있다.

4.2 기후분석을 통한 적용 풍력발전시스템 선정

주동높이에 따른 풍속변도분석결과와 상용화된 시스템고찰을 통하여 서울지 역공동주택단지내 적용가능한 시스템을 선정하였다. 기동풍속은 낮을수록 유리하 며 경격풍속에 따라 시스템의 용량이 결정되어 적절한 시스템을 선정할 수 있는 데 25층형이 상대적으로 강한 풍속을 나타내 생산전력량이 큰 시스템의 선정이 가능할 것으로 예측된다. 본 사례연구에서 선정한 시스템은 상용화된 시스템중 해외설적이 풍부하며 상대적으로 같은 풍속에서도 효율이 높은 시스템을 선정하 는 것을 기준으로 하였다.

4.2.1 기후분석을 통한 풍력발전시스템 선정

각 Zone로 살펴보면 Zone 1은 5층형, 15층형, 초고층형인 25층형이 혼재하고 있으며, Zone 2는 15층형내의 중층형으로 이루어져 있다. Zone 3의 경우 6층형이 대부분을 차지하며 15층형의 중층형 주동이 조합되어 있다.

따라서, 각 주동을 지층형인 5층형, 중층형인 15층형, 초고층형인 25층형로 나 누어 풍속을 보정하여 분석하였다.
(1) 5층형 주동

(그림 4.5) 5층형 동속빈도분석결과

(그림 4.5)는 5층형 주동의 동속빈도분석결과로서, 2.5m/s이하의 동속이 40%이상을 나타내고 있었으며 3.5m/s이하의 동속은 50~70%의 동도분포를 나타내고 있었다. 따라서, 기동동속 2.5~3m/s내외의 시스템설력이 가능함으로 예측되며 이러한 시스템을 설계시 이동력을 제외한 기간에는 운전이 가능하다. 또한 최근 기술의 급격한 발달로 2m/s의 기동동속을 가지는 시스템도 상용화되어 있으므로 연중운전을 위해서는 초소형의 동력발전기를 선정할 수 있다. 본 연구에서는 Westwind사의 5kW급을 선정하였으며 시스템 사양은 <표 4.2>와 같다.

<표 4.2> 5층형주동의 선정시스템 사양

<table>
<thead>
<tr>
<th>Specification</th>
<th>5 kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Up Wind Speed</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Start Up Wind Speed</td>
<td>3.5 m/s</td>
</tr>
<tr>
<td>Rated Wind Speed</td>
<td>14 m/s</td>
</tr>
<tr>
<td>Rated Power</td>
<td>5kW</td>
</tr>
<tr>
<td>Rotor Speed</td>
<td>120 - 750</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>5.1 m</td>
</tr>
<tr>
<td>Weight</td>
<td>250kg</td>
</tr>
<tr>
<td>Blade Material</td>
<td>Pultruded Fibreglass</td>
</tr>
<tr>
<td>DC Voltages Available</td>
<td>48V, 96V, 110V, 120V</td>
</tr>
</tbody>
</table>
(2) 15층형

(그림 4.6) 15층형 풍속빈도분석결과

(그림 4.6)은 15층형주동의 풍속빈도분석결과로, 15층형의 경우 5층형주동에 비해 풍속이 높고 3.5m/초가상의 풍속의 빈도 또한 40%이상으로 안정된 수준을 보여 5층형주동에 선정된 시스템과 기동풍속이 3.5m/초이상이며 정격출력이 더 높은 10kW급의 시스템도 적용이 가능할것으로 예측된다. 따라서 15층형주동에는 5층형에 선정된 기중인 5kW급 시스템의 적용또한 가능하며, 선정시스템으로는 Westwind사의 10kW급기중을 선정하였다. Westwind 10kW급 시스템의 사양은 <표 4.3>과 같다.

<표 4.3> 15층형주동의 선정시스템 사양

<table>
<thead>
<tr>
<th>specification</th>
<th>10kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Up Wind Speed</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Start Up Wind Speed</td>
<td>4.0 m/s</td>
</tr>
<tr>
<td>Rated Wind Speed</td>
<td>14 m/s</td>
</tr>
<tr>
<td>Rated Power</td>
<td>10kW</td>
</tr>
<tr>
<td>Rotor Speed</td>
<td>110 - 600</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>7 m</td>
</tr>
<tr>
<td>Weight</td>
<td>500kg</td>
</tr>
<tr>
<td>Blade Material</td>
<td>Pultruded Fibreglass</td>
</tr>
<tr>
<td>DC Voltages Available</td>
<td>110V & 120V</td>
</tr>
</tbody>
</table>
(3) 25층형

![25층형 월별풍속빈도분포]

(그림 4.7) 25층형 월별풍속빈도분포결과

(그림 4.7)은 25층형 주동의 월별풍속분포결과로서, 평균풍속 3.98m/s, 최대풍속 23.57m/s로 예측되어 기동풍속과 정격풍속이 높은 시스템의 선정이 가능하다. 또 5층형과 15층형에서 선정한 시스템을 적용시 풍속이 높아 생산전력량도 증가할것으로 예측된다. 따라서 25층형에는 5층형과 15층형에 적용한 5kW급과 10kW급과 기동풍속과 정격풍속은 비슷하나 로터길이가 길어 정격출력이 높은 시스템중 20kW급의 Jacobs사 제품을 선정하였다. 20kW급 시스템의 사양은 <표 4.4>와 같다.

<표 4.4> 25층형주동의 선정시스템 사양

<table>
<thead>
<tr>
<th>specification</th>
<th>20kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Up Wind Speed</td>
<td>3 m/s</td>
</tr>
<tr>
<td>Start Up Wind Speed</td>
<td>4.0 m/s 8mph</td>
</tr>
<tr>
<td>Rated Wind Speed</td>
<td>14 m/s 26mph</td>
</tr>
<tr>
<td>Rated Power</td>
<td>20kW</td>
</tr>
<tr>
<td>Rotor Speed</td>
<td>450-1050</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>8.8 m</td>
</tr>
<tr>
<td>Weight</td>
<td>약 2000kg</td>
</tr>
<tr>
<td>Blade Material</td>
<td>Fiberglass</td>
</tr>
<tr>
<td>DC Voltages Available</td>
<td>40-180VAC</td>
</tr>
</tbody>
</table>

![Power Curve]

![Estimated Annual Output (KWh)]
(4) 공동주택주동유형별 선정된 풍력발전시스템의 출력성능

풍속에 대한 출력특성은 성능곡선 혹은 출력곡선에 의해서 풍력발전시스템의 성능을 나타내고 있다. 풍력발전기 제조사의 성능곡선에 따라 년간발전량은 (식 4.1)로 구할 수 있다. 37)

\[
\text{년간발전전력량(kWh)} = \quad \text{(식 4.1)}
\]

이하서 Visms 풍속계급 i의 발전출력(kW)이며 Fi는 풍속계급 i의 출현율을 나타낸다. 위의 식을 이용하여 선정시스템의 공동주택유형별 년간발전전력량을 추정하였으며 그 결과는 (그림 4.8), <표 4.5>에 나타났다.

5층형주동의 5kW급은 연간 1684.23kWh의 출력량을 나타냈으며, 15층형주동의 10kW급은 4409.04, 25층형 주동의 경우 10kW급의 경우 6825.30kWh, 20kW급의 경우 15386.48kWh를 나타내어 두배이상의 발전출력을 나타낼것으로 분석되었다. <표 4.5>와 (그림 4.8)은 각 선정시스템의 월별 출력량을 나타낸 것이다. 풍속이 약한 여름철에 시스템의 출력량도 적었으며 풍속이 강한 1-4월경에 여름철의 두 배이상의 출력량을 나타내고 있었다.
표 4.5 공동주택 유형별 시스템설정에 따른 발전전력량(kWh)

<table>
<thead>
<tr>
<th></th>
<th>발전전력량(kWh)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5층형(5kW급)</td>
<td>15층형(10kW급)</td>
<td>25층형(10kW급)</td>
<td>25층형(20kW급)</td>
</tr>
<tr>
<td>1월</td>
<td>166.95</td>
<td>437.69</td>
<td>686.01</td>
<td>1540.648</td>
</tr>
<tr>
<td>2월</td>
<td>189.77</td>
<td>506.05</td>
<td>752.72</td>
<td>1681.835</td>
</tr>
<tr>
<td>3월</td>
<td>233.56</td>
<td>615.79</td>
<td>929.72</td>
<td>2073.855</td>
</tr>
<tr>
<td>4월</td>
<td>229.02</td>
<td>603.46</td>
<td>898.56</td>
<td>2013.531</td>
</tr>
<tr>
<td>5월</td>
<td>179.99</td>
<td>464.17</td>
<td>722.57</td>
<td>1617.007</td>
</tr>
<tr>
<td>6월</td>
<td>96.13</td>
<td>256.53</td>
<td>410.30</td>
<td>934.5426</td>
</tr>
<tr>
<td>7월</td>
<td>128.03</td>
<td>339.70</td>
<td>517.58</td>
<td>1173.739</td>
</tr>
<tr>
<td>8월</td>
<td>81.89</td>
<td>208.95</td>
<td>342.81</td>
<td>788.964</td>
</tr>
<tr>
<td>9월</td>
<td>64.61</td>
<td>158.45</td>
<td>254.14</td>
<td>587.863</td>
</tr>
<tr>
<td>10월</td>
<td>87.38</td>
<td>226.68</td>
<td>362.55</td>
<td>828.9447</td>
</tr>
<tr>
<td>11월</td>
<td>104.16</td>
<td>267.72</td>
<td>435.66</td>
<td>986.4607</td>
</tr>
<tr>
<td>12월</td>
<td>122.73</td>
<td>323.83</td>
<td>512.67</td>
<td>1159.088</td>
</tr>
<tr>
<td>total</td>
<td>1684.23</td>
<td>4409.04</td>
<td>6825.30</td>
<td>15386.48</td>
</tr>
</tbody>
</table>

4.3 설계목표설정

4.3.1 선정 공동주택단지의 전력부하예측에 따른 풍력발전시스템의 담당부하 결정

우리나라 전국 공동주택의 전력사용량을 추정한 결과 국내 총전력량의 7.24%를 점하고 있는 것으로 분석되었으며, 단지 전체내 공공전력의 사용량은 총 전력의 30.3%를 차지하고 있었다. 여기서 공공전력중 외등이 차지하는 비율은 2.8%이며, 지하주차장은 22%로 나타났다. 공동주택단지 내 풍력발전시스템을 적용하기 위해서는 전력부하에 따라 적정 풍력발전기의 대수를 결정하게 된다. 따라서 본 장에서는 선정 공동주택단지를 Zone 별로 분류하여 풍력발전시스템으로 공공전력부하중 전체단지의 30.3%를 차지하는 조명부하를 설계목표로 설정야 한다.

38) 진중용 외 3인, 공동주택 부하행태 조사연구, 제15회 에너지기술정책워크숍, 2000.11, pp.16.
여 가로등조명전력부하, 계단실조명과 비상유도등조명부하, 지하주차장 조명부하를 산출하였다.

(1) 외등전력부하분석

단지내 설치되는 외등은 가로등과 보안등으로 나눌 수 있으며, 가로등은 도로변에 설치되는 것으로 단지내 도로폭에 따라 배치형태가 결정되는데 선정한 공동주택의 경우 15m, 18m의 도로가 배치되어 2열로 배치되며 40-60m간격으로 설치하는 것을 원칙으로 전력부하를 산정하였다. 보안등의 경우 단지내 보도와 안전상의 위험을 고려하여 설치하는 것으로 각 보도형상에 따라 적절하게 설치하여 보안등의 전력부하를 산정하였다. 또한 외등은 가로등과 보안등 모두 200W급을 설치하는 것으로 가정하였으며 접동시간은 보통 일몰후 15분에서 일출직전 20분으로 규정되어 있어 평균 9시간으로 계산하였으며, <표 4.6>은 각 Zone 별 외등의 연간전력사용예측량이다.

<표 4.6> 각 Zone 별 외등전력부하분석

<table>
<thead>
<tr>
<th></th>
<th>가로등 200W, 오후7시~오후6시(9시간)</th>
<th>보안등 200W, 오후7시~오후6시(9시간)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BILOCK</td>
<td>10512kWh</td>
<td>9198kWh (200W×16개×3시간×365일=10512kWh)</td>
</tr>
<tr>
<td>2BILOCK</td>
<td>11826kWh</td>
<td>9855kWh (200W×18개×3시간×365일=11826kWh)</td>
</tr>
<tr>
<td>Zone 1</td>
<td>41391kWh</td>
<td></td>
</tr>
<tr>
<td>3BILOCK</td>
<td>14454kWh</td>
<td>19710kWh (200W×22개×3시간×365일=14454kWh)</td>
</tr>
<tr>
<td>4BILOCK</td>
<td>10512kWh</td>
<td>19710kWh (200W×16개×3시간×365일=10512kWh)</td>
</tr>
<tr>
<td>Zone 2</td>
<td>64386kWh</td>
<td></td>
</tr>
<tr>
<td>5BILOCK</td>
<td>5256kWh</td>
<td>9198kWh (200W×8개×3시간×365일=5256kWh)</td>
</tr>
<tr>
<td>Zone 3</td>
<td>14454kWh</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>52560kWh</td>
<td>67671kWh</td>
</tr>
</tbody>
</table>

단지내 외등 총조명부하 : 120231kWh
(2) 계단등, 비상등 전력부하분석

각 Zone 별로 계단실내에 설치되는 계단등과 비상등의 조명전력부하를 산출하였다. 계단등은 총별로 2개씩, 30W급, 비상등은 1개씩, 10W급으로 산정하여 계산하였으며, 건축법규상 설치해야하는 비상유도등도 고려하여 산정하였으며, <표 4.7>은 계단등과 비상유도등의 연간전력사용량예측량이다.

<표 4.7> 각 Zone 별 계단등·비상등 전력부하분석

<table>
<thead>
<tr>
<th>Zone</th>
<th>계단등 30W, 1시간</th>
<th>비상등 10W, 24시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BILOCK</td>
<td>8146.8kWh</td>
<td>30W744개1시간*365일=8146.8kWh</td>
</tr>
<tr>
<td>2BILOCK</td>
<td>4182.9kWh</td>
<td>30W382개1시간*365일=4182.9kWh</td>
</tr>
<tr>
<td>Zone 1</td>
<td>61646.8kWh</td>
<td></td>
</tr>
<tr>
<td>3BILOCK</td>
<td>9504.6kWh</td>
<td>30W868개1시간*365일=9504.6kWh</td>
</tr>
<tr>
<td>4BILOCK</td>
<td>9110.4kWh</td>
<td>30W832개1시간*365일=9110.4kWh</td>
</tr>
<tr>
<td>Zone 2</td>
<td>93075kWh</td>
<td></td>
</tr>
<tr>
<td>5BILOCK</td>
<td>6383.85kWh</td>
<td>30W583개1시간*365일=6383.85kWh</td>
</tr>
<tr>
<td>Zone 3</td>
<td>31963.63kWh</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>37328.55kWh</td>
<td>149358kWh</td>
</tr>
</tbody>
</table>

단지내 계단등·비상등 총전력부하 : 186686.55kWh

(3) 지하주차장 조명부하 분석

지하주차장은 공공전력부하로서 대부분이 24시간 상시등동되는 조명부하에 쓰이고 있다. 선정한 공동주택단지에는 데크를 이용하여 주차의 약 50%를 해결하고 있으며, 지하주차장면정과 차량주차판련에 따라 조명부하를 산출하였다. 40W급의 조명으로 산정하였으며, 24시간 상시등동으로 상당량의 전력부하가 발생하고 있었다. <표 4.8>은 각 Zone 별 지하주차장의 연간전력사용량의 예측량이다.
<표 4.8> 각 Zone 별 지하차장 조명부하분석

<table>
<thead>
<tr>
<th>지하차장</th>
<th>주차대수</th>
<th>40W/24시간</th>
<th>40W/24시간배기수량</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BILOCK</td>
<td>519대</td>
<td>40W44024시간*365일=136656 kWh</td>
<td>136656 kWh</td>
</tr>
<tr>
<td>2BILOCK</td>
<td>283대</td>
<td>40W24024시간*365일=73584 kWh</td>
<td>73584 kWh</td>
</tr>
<tr>
<td>Zone 1</td>
<td></td>
<td></td>
<td>210240 kWh</td>
</tr>
<tr>
<td>3BILOCK</td>
<td>756대</td>
<td>40W66024시간*365일=159081.6 kWh</td>
<td>159081.6 kWh</td>
</tr>
<tr>
<td>4BILOCK</td>
<td>869대</td>
<td>40W63524시간*365일=189216 kWh</td>
<td>189216 kWh</td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
<td></td>
<td>348297.6 kWh</td>
</tr>
<tr>
<td>5BILOCK</td>
<td>207대</td>
<td>40W15624시간*365일=42048 kWh</td>
<td>42048 kWh</td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
<td></td>
<td>42048 kWh</td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td>600585.6 kWh</td>
</tr>
</tbody>
</table>

4.4 전력발전시스템의 공동주택단지내 배분계획

4.4.1 전력부하유형 및 전력발전시스템의 출력특성에 따른 대수 산정

설계목표로 설정된 전력부하량의 유형에 따라 선정시스템의 출력량과 Zone 내의 주동총수를 고려하여 전력발전시스템의 소요대수를 산정하였다.

(1) 외동전력부하 담당위한 시스템 소요대수 산출

외동전력부하는 <표 4.6>과 같으며 Zone 1의 경우 20kW급 3대, Zone 2의 경우 20kW급 3대와 10kW급 4대, Zone 3은 10kW급 4대가 적정하다. <표 4.9>는 각 Zone 별 외동전력부하를 담당하기 위한 소요대수 산출량을 나타낸 것이다.

<표 4.9> 외동전력부하 담당위한 시스템 소요대수 산출

<table>
<thead>
<tr>
<th>외동전력부하</th>
<th>시스템 소요대수 산출</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>41391kWh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td>64386kWh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 3</td>
<td>14454kWh</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 81 -
(2) 계단실등, 비상유도등 전력부하 담당위한 시스템 소요대수 산출

계단실등, 비상유도등의 전력부하는 표와 같으며 Zone 1의 경우 20kW급 4대, Zone 2의 경우 20kW급 4대와 10kW급 6대, Zone 3은 10kW급 6대와 5kW급 4대가 적정한 것으로 산출되었다. <표 4.10>은 계단등과 비상유도등의 전력부하를 담당하기 위한 소요대수 산출량이다.

<표 4.10> 계단실등, 비상유도등 전력부하 담당위한 시스템 소요대수 산출

<table>
<thead>
<tr>
<th></th>
<th>계단실등, 비상유도등 전력부하</th>
<th>시스템 소요대수 산출</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>61646.8kWh</td>
<td>25층형주동에 20kW급 3대 15386.48kWh*3대=47594.4kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25층형주동에 20kW급 1대 15386.48kWh*1대=15386.48kWh</td>
</tr>
<tr>
<td>Zone 2</td>
<td>93075kWh</td>
<td>25층형주동에 20kW급 3대 15386.48kWh*3대=47954.4kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15층형주동에 10kW급 4대 4409.04kWh*4대=17636.16kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25층형주동에 20kW급 1대 15386.48kWh*1대=15386.48kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15층형주동에 10kW급 2대 4409.04kWh*2대=8818.08kWh</td>
</tr>
<tr>
<td>Zone 3</td>
<td>31963.63kWh</td>
<td>15층형주동에 10kW급 4대 4409.04kWh*4대=17636.16kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15층형주동에 10kW급 2대 4409.04kWh*2대=8818.08kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5층형주동에 5kW급 4대 1684.23kWh*4대=6736.92kWh</td>
</tr>
</tbody>
</table>

(3) 지하주차장 조명 전력부하 담당위한 시스템 소요대수 산출

지하주차장의 조명전력부하는 <표 4.8>과 같으며 Zone 1의 경우 20kW급 11대와 10kW급 12대, Zone 2의 경우 20kW급 11대와 10kW급 19대, Zone 3은 10kW급 8대와 5kW급 4대가 적정하다. 지하주차장의 조명전력부하를 담당하기 위한 시스템의 소요대수산출량을 <표 4.11>에 나타내었다.

지하주차장의 조명은 24시간 상시점등으로 그 전력소비량이 상당히 크게 분석되어 풍력발전시스템의 적응시 Zone 1과 Zone 3의 경우 100% 해결이 가능하지만, Zone 2의 경우 시스템간 이격거리로 고려하지 않고 주동 1개당 하나의 시스템을 설치하더라도 지하주차장 조명부하의 최대 73%만을 담당할 수 있는 것으로 분석되었다.
<표 4.11> 지하주차장 조명 전력부하 담당위한 시스템 소요대수 산출

<table>
<thead>
<tr>
<th>Zone 1</th>
<th>210240kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>25층형 주동에 20kW급 3대</td>
<td>15386.48kWh*3대=4594.4kW</td>
</tr>
<tr>
<td>25층형 주동에 20kW급 1대</td>
<td>15386.48kWh*1대=15386.48kW</td>
</tr>
<tr>
<td>25층형 주동에 20kW급 7대</td>
<td>15386.48kWh*7대=107705.36kW</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 11대</td>
<td>4409.04kWh*11대=48499.44kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zone 2</th>
<th>348297.6kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>25층형 주동에 20kW급 3대</td>
<td>15386.48kWh*3대=47594.4kWh</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 4대</td>
<td>15386.48kWh*4대=61546.32kWh</td>
</tr>
<tr>
<td>25층형 주동에 20kW급 1대</td>
<td>15386.48kWh*1대=15386.48kW</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 2대</td>
<td>4409.04kWh*2대=8818.08kWh</td>
</tr>
<tr>
<td>25층형 주동에 20kW급 7대</td>
<td>15386.48kWh*7대=107705.36kW</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 13대</td>
<td>4409.04kWh*13대=57317.52kW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zone 3</th>
<th>42048kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>15층형 주동에 10kW급 4대</td>
<td>4409.04kWh*4대=17636.16kWh</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 2대</td>
<td>4409.04kWh*2대=8818.08kWh</td>
</tr>
<tr>
<td>5층형 주동에 5kW급 4대</td>
<td>1684.23kWh*4대=6736.92kWh</td>
</tr>
<tr>
<td>15층형 주동에 10kW급 2대</td>
<td>4409.04kWh*2대=8818.08kWh</td>
</tr>
<tr>
<td>5층형 주동에 5kW급 1대</td>
<td>1684.23kWh*1대=1684.23kWh</td>
</tr>
</tbody>
</table>

4.4.2 풍력발전시스템의 선정 공동주택단지내 배치계획

(1) 입면상 배치계획

각 Zone 별 주동의 장단변비에 따라 입면상 배치계획을 산출하였으며 <표 4.12>에 나타내었다.
<표 4.12> 선정공동주택단지의 Zone 별 적정 Hub 높이산출

<table>
<thead>
<tr>
<th>Zone</th>
<th>15층형 적정Hub 높이</th>
<th>20층형 적정Hub 높이</th>
<th>25층형 적정Hub 높이</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone1</td>
<td>W H 15.14m</td>
<td>W H 12m</td>
<td>W H 13.4m</td>
</tr>
<tr>
<td>Zone2</td>
<td>W H 18.5m</td>
<td>W H 13m</td>
<td>W H 13.4m</td>
</tr>
<tr>
<td>Zone3</td>
<td>W H 9.4m</td>
<td>W H 12.4m</td>
<td>W H 11.6m</td>
</tr>
</tbody>
</table>

(2) 평면상 배치계획

풍력발전기의 배치계획시 엽배치가 더 효과적이며, 로터길이를 고려할 때 주중 항에 대한 종렬이격거리가 더욱 중요하므로 사례분석시에는 엽배치시의 종렬이격거리인 5-9RD(Rotor Diameter)를 고려하여 각 선정된 시스템간 이격거리 산정하였다.

5kW급 시스템의 로터길이는 5.1m 이므로 25.5m-45.9m, 10kW급은 7m 이므로 35-49m, 20kW급은 8.8m 이므로 44m-79.2m의 이격거리를 유지해야 한다. 본 사례분석에서는 적정이격거리를 최소종렬이격거리인 5RD로 적용하여 5kW급은 25.5m, 10kW급은 35m, 20kW급은 44m로 산정하여 배치하였다.

4.5 설계목표설정안에 따른 단지내 배치안

4.5.1 전력담당유형에 따른 적용방안

선정공동주택단지의 전력부하를 외부, 계단실조명, 지하주차장 조명으로 분류하여 산출한 결과를 토대로 각 전력부하를 담당할 수 있는 풍력발전기의 대수를 산정하고 이를 토대로 각 단지의 설계디자인에 맞추어 배치하였다. 풍력발전기의 적용시 앞서 언급한 적정 이격거리와 시스템 검토사항을 고려하였다. (그림 4.9)
는 풍력발전기의 공동주택단지내 전용 시스템도로서 담당 전력부하에 따라 연결 방식이 달라진다.

(그림 4.9) 담당전력부하에 따른 전용 시스템도

(1) 외동 조명부하

단지내 외동의 조명부하는 연간 120231kWh로서 각 Zone 별 주동충수와 배치 형태에 따라 풍력발전기의 대수가 결정되었다. Zone 1은 25층형 주동에 20kW급 3대, Zone 2는 25층형 주동에 20kW급 3대와 15층형 주동에 10kW급 4대, Zone 3는 15층형 주동에 10kW급 4대를 설치하였다. 각 Zone의 진입로상에 엔드마크로서 배치하는 것을 첫 번째 원칙으로 하였으며, 출입량이 큰 시스템을 우선적으로 배치하였고 각 시스템간의 평면상의 이격거리의 고려하여 배치하였다.

(그림 4.10)은 단지내 외동조명부하를 담당하기 위한 풍력발전시스템의 배치 계획을 나타낸 것이다.
(그림 4.10) 외동 담당 배치계획

(2) 계단등, 비상유도등 조명부하

단지내 계단등, 비상유도등의 조명부하는 연간 186686kWh로서 각 Zone 별 주동충수와 배치형태에 따라 풍력발전기의 대수가 결정되었다. Zone 1은 25층형 주동에 20kW급 4대, Zone 2는 25층형주동에 20kW급 4대와 15층형 주동에 10kW급 6대, Zone 3는 15층형 주동에 10kW급 6대와 5층형주동에 5kW급 4대를 설치하였다. 외등보다 부하량이 크게 분석되어 외등부하담당시의 계획안에 추가적으로 배치하였다. (그림 4.11)은 단지내 계단등, 비상유도등조명부하를 담당하기 위한 풍력발전시스템의 배치계획을 나타낸 것이다.
(3) 지하주차장 조명부하

단지내 지하주차장의 조명부하는 연간 600585kWh로서 외등조명부하의 5배가 넘는 수준이었으며 풍력발전기도 상대적으로 많은 대수가 필요하다. Zone 1은 25층형 주동에 20kW급 12대, 15층형 주동에 10kW급 8대, Zone 2는 25층형 주동에 20kW급 11대와 15층형 주동에 10kW급 25대, Zone 3는 15층형 주동에 10kW급 7대와 5층형 주동에 5kW급 5대를 설치하였다. 계단등, 비상유도등부하담당시의 계획안에 추가적으로 배치하였으며 Zone 2의 경우 전체 Zone 에 배치할 수 있는 최대량이었으나 전체지하주차장조명부하를 해결할 수는 없으며 73%를 담당할 수 있다. (그림 4.12)는 단지내 지하주차장 조명부하를 담당하기 위한 풍력발전시스템의 배치계획을 나타낸 것이다.
4.5.2 각 Zone 별 적용안

(1) Zone 1 적용안

(그림 4.12) 지하주차장 배치계획

(그림 4.13) Zone 1의 전체배치와 경관
(그림 4.14) Zone 1의 입면형상

<표 4.9> <표 4.10> <표 4.11>의 담당전력부하 산출량에 따른 적정 풍력발전 기의 용량 대수 산정을 기초로 Zone 1의 디자인개념에 따라 시스템을 배치하였 다. (그림 4.13)와 (그림 4.14)은 Zone 1의 경관을 모형과 입면도로서 나타낸 것 으로, 전입로상의 타워동을 랜드마크적 이미지로 활용하고 있어 이러한 설계개념 을 강화하는 것을 시스템배치의 개념으로 사용하였다.

(그림 4.15)는 시스템설치후의 경관을 보여주고 있다.

(그림 4.15) Zone1 설치예

(2) Zone 2의 적응안

(그림 4.16) Zone 2의 전체입면
(그림 4.16)과 (그림 4.17)은 Zone 2의 경관과 임묘도를 나타낸 것으로 Zone 1과 마찬가지로 진입로상 주동에 랜드마크적 성격을 부여하고 있으며 관상형의 주동이 방사형으로 배치되어 있다.

점차 총수가 높아지는 관상형주동과 타워형주동에 풍력발전기를 설치하여 방사형으로 배치되어 있는 단지내 스카이라인에 변화를 주었다. (그림 4.18)는 풍력 발전기의 설치예를 보여주고 있다.

(그림 4.18) zone2 설치예

(3) Zone 3의 적용안

(그림 4.19) Zone 3의 전체배치와 경관
(그림 4.19)와 (그림 4.20)은 Zone 3의 전체경관과 입면을 나타낸 것으로 Zone 중앙의 지층주택과 Zone 외부의 중층형 주동으로 구성되어 있다. 환상형주동과 타워형주동이 일렬로 배치되어 있으며 블록 중앙을 강화 층이 관통하고 있다.

따라서 Zone 내부를 관통하는 층선을 따라 일렬로 배치된 주동에 풍력발전기를 배치하였다. (그림 4.21)은 설치예를 보여주고 있다.

(그림 4.21) zone3 설치예
제 5장 결 론

본 연구는 공동주택단지에서 풍력발전시스템의 적용가능성과 활용방안을 제시하는 것을 목적으로 한다. 서울지역의 지난 1991년부터 2001년까지 11년간 서울 지역 기상대 측후소의 풍속관측데이터를 분석하여 공동주택 주동풍수의 유형별
적용가능성을 예측하였으며, 풍력발전시스템 고찰을 통하여 적용이 가능한 경우
의 적정 풍력발전시스템의 선정방안을 제시하고, 공동주택단지에 풍력발전시스템
의 배치계획 시 건토사항을 건물에 의한 기류의 변화와 공동주택단지의 건축적
특성에 의한 응용, 평면상 배치계획으로 분류하여 고찰하였다. 이를 토대로 공동
주택단지내 풍력발전시스템의 설계 Process를 설정하고 사례연구를 통하여
Process를 검증하였다. 이를 통해 얻은 결론은 다음과 같다.

(1) 서울지역 공동주택단지의 풍력발전시스템 적용가능성을 분석하기 위하여 주
동의 중속에 따라 유형별로 분류하였으며, 기동풍속 3.5m/s, 빈도 40%를 기준으
로 분석한 결과 5층형주동단지의 경우 2,3,4층으로 풍력발전시스템 적용이 한정적이
나, 15층형주동단지의 경우 여름철을 제외한 시기에는 적용이 가능한 것으로 나
타났다. 25층형주동단지의 경우 연중 풍력발전시스템의 가동에 적합한 풍속과 변
동율을 나타내어 풍력발전시스템의 적용이 효과적일 것으로 예측되었다.

(2) 서울지역의 공동주택단지 주동별 풍속분석결과 적용이 가능한 시스템을 풍
속에 따라 고찰한 결과, 기동풍속 3m/s, 블레이드길이 10m이하의 20kW급이하의
중소형시스템이 적용이 가능한 것으로 분석되었으며, 시스템이 건물에 미칠수 있
는 영향을 소요, 진동, 하중, 전파장해, 경관으로 나누어 고찰한 결과 선택된
20kW급이하의 시스템은 건물에도 영향을 미치지 않는 것으로 분석되어 시스템
의 선정이 타당한 것으로 나타났다.
(3) 공동주택단지의 건축적 특성에 따른 풍력발전시스템의 배치계획을 입면상 배치와 평면상 배치계획으로 나누어 고찰하였다. 풍력발전시스템의 입면상 배치계획은 건물의 장단변비에 따라 다양한 형태로 주변 형태로서 편목도형의 국 민주택규모 단위세대조합수에 따른 적정 **Hub** 높이를 산출하였다. 풍력발전시스템의 풍량 상 배치계획은 옆배치와 평행배치로 나눌 수 있으며 옆배치시 로터길이가 길어져 출력량에서 더 유리한 것으로 분석되었다.

(4) 공동주택단지내 풍력발전시스템의 적용가능성 검토를 바탕으로 공동주택단 지내 풍력발전시스템의 설계 Process를 제안하였다. 이 Process는 공동주택단지의 건축적 특성과 풍력발전시스템의 시스템특성에 따라 각 단계별로 대상분석, 설계목표설정, 풍력발전시스템의 배치계획, 계획안 결정으로 나뉘어 위계를 분류 하여 순차적으로 제시한 것이다. 각 단계별로 건축적 특성과 시스템특성의 상호 관계를 고려하여 작성하였으며, 이를 사례분석을 통하여 검증하였다.

(5) 사례분석을 통해 공공전력부하중 단지내 **외등부하**, 계단등과 비상유도등 조명부하, 지하주차장 조명부하를 설계목표로 설정하여 적용한 결과, 외등부하와 계단등 및 비상유도등부하는 단지내 풍력발전으로 담당할 수 있으며, 지하주차장의 조명은 24시간 상시전동으로 그 전력소비량이 상당히 크게 분석되어 풍력발 전시스템의 적용시 Zone 1과 Zone 3의 경우 100% 해결가능하지만, Zone 2의 경 우 시스템간 이격거리로 고려한 최대전력생산량이 지하주차장 조명부하의 최대 71%만을 담당할 수 있는 것으로 분석되었다.

오늘날, 지구환경의 문제는 에너지절약의 문제나 환경보전의 문제에서 더 나아가 인류문명의 지속가능성에 대한 문제로 인식된다. 현제 풍력발전시스템에 대한 지속적인 연구개발로 효율이 향상되고 비용이 절감되어 전세계적으로 풍력발전 시스템의 보급이 계속 확대될 전망이며 그 적용가능성이 높게 평가된다. 따라서 풍력발전시스템과 같은 재생가능에너지원에 대한 정책적, 제도적 장치가 됨받침 되었을때 그 활용성이 크게 확대될수 있을것이다.
본 연구를 바탕으로 실시되어져야 할 추후 연구는 다음과 같다.

1) 본 연구는 국내 공동주택단지의 풍력발전시스템 적응가능성을 검토하고 그 설계 Process를 제시하여, 공동주택단지내 풍력발전시스템의 적응방안을 고찰하였다. 풍속의 변화에 따른 적응가능성을 검토하면서 서울지역 기상청의 풍속관측 데이터를 사용하여 지수법칙에 근거하여 단순하게 분석하였으나, 실제 공동주택 단지내 적용시에는 측정데이터에 바탕을 둔 확률밀도함수를 이용하여 보다 정확한 분석이 이루어져야 할 것이다.

2) 공동주택단지내의 다양한 주동배치형상에 따라 기류의 분포가 변화할 수 있으므로 풍동실험과 수동실험을 수행하여 단지의 특성에 따른 기류 변화에 대한 고려가 필요하다.

3) 본 연구에서 고찰한 풍력발전시스템의 사양은 해외유수의 기업의 자료를 바탕으로 한 것이나, 보다 다양한 시스템사양에 대한 고찰이 이루어져야 할 것이며 건물에 설치시 시스템의 구조와 기존계통전력과의 연계에 필요한 시스템과 건물과의 시스템구축에 관한 보다 상세한 연구가 필요하다.
참고문헌

3. 건설교통부령 건축물의 구조기준 등에 관한 규칙
5. 김광호 외 1인, “풍력에너지의 이용”, 『설비저널』 제30권 1호, 2001.01
7. 김명준, “공동주택 기계설 설비기기의 소음 전동 실태 및 특성”, 『한국소음진동공학회』 제2000년도 생활환경 소음진동 저감방안 세미나』, 2000.09
8. 김석권, 『풍력발전 자료모음집, 신기술』, 2002.02.
14. 산업자원부, 『대체에너지 기술개발 자료집, 에너지관리공단』, 2001. 11.
15. 산업자원부, 『풍력발전단지 건설 타당성 분석 연구』, 1999.
17. 서울시, 『서울시 공동주택 현황조사 자료』, 2000.
18. 손중열, “국내외 풍력발전기의 기술개발 및 보급현황”, 『재생가능에너지 제2차 위크샵』, 2002.2
19. 심우갑 외 2인, “국내 아파트 단지에 적용된 탑상형 주거동의 계획 특성에
관한 연구”, 『한국건축학회 논문집』 제 17권 10호, 2001.10
20. 에너지관리공단, 『신재생에너지관련 자료집』, 1999
21. 윤재욱, “서울지역의 바람특성과 횡류분포(와이블분포)를 이용한 평가,
풍속 예측에 관한 연구”, 『한국건축학회논문집』 제 8권 4호, 1992.4
22. 원안나 외 3인, “공동주택의 평면유형별 화재시 손도분포에 관한 연구”,
『한국건축학회 학술발표논문집』, 2000.10.
23. 이정일, 『자연통풍 활용을 위한 공동주택 배치형태에 따른 폭속분포에 관
한 연구』, 수원대 석사논문, 2000.2.
24. 장선익 외 1인, “고층 공동주택의 설계조사연구”, 『한국건축학회 논문집』
, 1993.
25. 정진영, 『대체에너지 기술개발 현황 및 발전비용에 관한 연구』, 창원대
석사학위논문, 2000.6
26. 전준용 외 3인, “공동주택 부하행태 조사연구”, 『제15회에너지기술결합위
크샵』, 2000.11.
27. 최재승 외 2인, “한국형 풍력터빈의 요구조건 검토”, 『한국항공우주학회
28. 추현욱 외 2인, “공동주택 지하주차장의 조명설비 실험 및 운용기법에 따른
성능분석 연구”, 『한국건축학회 학술발표논문집』 제 19권 2호, 1999.10
30. 허종철, “풍력발전시스템의 국내외동향 및 풍력에너지예측과 풍력발전지조성”,
『RRC Workshop』, 2000.10.
32. BTM Consultant Aps. BTM Consultant, 2000
34. California Energy Commission, “Buying a Small Wind Electric
38. Flowers, Larry, “Wind Power Update”, NREL
45. Milligan,R., ”Choosing Wind Power Plant Locations and Sizes Based on Electric Reliability Measures Using Multiple-Year Wind Speed Measurements”, U.U.Association for Energy Economics Annual Conference, 1999.8
48. Renzo, D.J. De, “Wind Power Recent Development”, Noyes Data
operation, 1979.

http://www.windpower.org/tour/wres/park.htm
http://www.eia.doe.gov/cneaf/solar.renewables/renewable.energy.annual/
backgrnd/fig22.gif
http://www.kowintech.com/products/60kW.htm
http://www.windpower.org/tour/index.htm

（NWTC, Wind Technology Development: Large and Small Turbines）
http://ces.kier.re.kr/ces/index3.htm (김건훈, 풍력발전기술의 현황 및 전망)
http://www.kowintech.com/products/60kW.htm
http://www.unep.or.kr/energy/korea/wind/win_intro.htm
http://www.awea.org/fag/basicwr.html
http://www.btm.dk/
http://www.nrel.gov/wind/
http://sol.crest.org/renewables/index.shtml
http://houzine.jugong.co.kr/upload15/new_list.asp
http://www.energy.ce.ro/

미국 Bergey 사가 제공한 10kW급 터빈의 소음측정자료
Blades(날개): 풍력발전의 회전력을 얻는 부분으로서 대부분의 풍력발전기는 2개 또는 3개의 블레이드 형태를 가지고 있다. 바람이 블레이드를 통과하면서 블레이드를 들어올리게 되고(lift) 회전하여 전기를 생산하기 위한 운동에너지가
발생하게 된다.

Brake(브레이크): 강풍시 및 이상시 또는 보수점검시에 로터를 정지시키기 위해서 필요한 장치이다.

cut-inspeed(기동풍속,시동풍속): 풍력발전기가 전기를 생산하기 위해 블레이드가 회전하기 시작하는 최소풍속

cut-outspeed: 강풍이나 기타 안전상의 이유로 풍력발전기의 로터를 점거나 블레이드의 회전을 정지시키게 되는 풍속으로 cut-out speed에 도달하더라도 전력생산이 0 로 멈추는 것은 아니며 경력출력량의 30~70%정도를 유지하게 된다.

Gearbox(기어박스): Gear는 풍속의 변동에 따른 블레이드의 회전수를 제어하는 것으로 블레이드의 적정회전수가 전력생산에 필수적이다. 기어박스는 풍력터빈의 생산비용에 가장 큰 부분을 차지한다.

Generator(발전기): 바람에 의한 회전에너지를 전기에너지로 변환하는 장치로서 일반적으로 증속기를 개입시켜 풍력터빈에 직결되어 나셀내에 설치된다.

Nacelle(나셀): 풍력에 의해 얻어진 로터의 회전에너지를 전기로 변환하는데 필요한 장치와 연동하는 풍향 및 풍속에 대한 제어구동장치를 결합한 부분으로 가변피치각 구동장치, 요구동장치, 브레이크, 발전기 등으로 구성된다.

Pitch(피치): 터빈의 생산전력량이 급격한 변동을 나타낼 때 날개의 피치각을 적절히 변화시켜 로터의 회전수 및 출력을 제어하는 것을 말한다.

Rotor(로터): blade(날개)와 hub(허브)를 통칭하여 로터라 한다.

Tower(타워): 풍력발전기의 로터와 나셀을 설치하기 위한 지지대로서 트레스식과 모노포울식이 있다. 높이가 증가할수록 풍속도 증가하므로 타워높이가 높아 절수록 터빈이 생산할수 있는 전력량도 커질수 있다.

Yawdrive(요구동장치): 프로펠러형 풍차의 경우, 끝 enim없이 변동하는 풍향에 대하여 효율이 높은 에너지를 얻기 위해 날개를 풍향에 정면으로 할 필요가 있다. 이 때문에 요제어는 날개의 강도 및 전동측면에서도 대단히 중요하다.
풍력발전 시스템의 출력특성은 아래 그림과 같이 나타난다.

풍력발전시스템의 출력특성

시동풍속(cut-in speed)은 풍력발전시스템이 기동할 수 있는 최저풍속이다. 풍력터빈 날개의 효율, 동력전달장치의 효율, 발전기의 효율특성 등에 의해서 시동풍속 이상의 바람이 되어야 전기를 생산할 수 있게 되며 터빈의 정격출력량에 따라 다양하다. 풍력터빈의 출력특성은 정격풍속(rated wind speed)이 될 때까지며 정격풍속 이상에서는 정격출력이 유지되도록 제어된다. 일정한 정격출력은 정지풍속(cut-out speed)이 될 때까지 유지되며 그 이상이 되면 풍력발전시스템의 안전을 위하여 운전을 멈추게 되며 일반적으로 20m/s 내외이다.
국문조목

지구환경문제가 에너지 문제와 연계되어 있음을 인식하기 시작하면서 대체에너지 이용이 크게 부각되고 있다. 이러한 대체에너지 중 풍력에너지지는 어느곳이나 섬해되어있는 무궁해, 무한정의 바람을 이용함으로 환경에 미치는 영향이 거의 없고 국토를 효율적으로 이용할 수 있으며, 기존의 화석연료와 대등한 가격경쟁체제로의 진입가능성이 높은 에너지로 평가받고 있다. 최근 유럽이나 미국등에서는 건물에서 적응가능한 소형풍력발전시스템의 보급이 크게 각광을 받고 있다. 그러나 우리나라의 경우에는 여러 가지 기술적, 환경적 문제와 안전상의 문제 뿐만 아니라 특히 적정수준의 바람을 확보하기 어렵기 때문에 건물에서의 풍력발전작용은 전히 시도되지 못하고 있다. 그러나, 최근 고층의 대규모 공동주택단지 건설이 활발해지고 있는 상황에서 재생에너지지분율이라는 측면을 감안할 때, 이러한 풍력발전시스템이 우리나라 에너지소비의 30%이상을 차지하고 있는 건축물에 적용되었을때 그 효율성이 클것으로 예상되어, 공동주택단지내 풍력발전시스템의 적응방안에 관한 연구의 필요성이 절실히 할 수 있다.

따라서 본 연구에서는 우리나라 주거용 건물의 과반수이상을 차지하고 있고, 다수의 단위세대로 구성된 아파트가 단지를 이루는 대규모 집합주거인 공동주택단지에서 풍력발전시스템의 적응가능성과 활용방안을 제시하는 것을 목적으로 한다.

본 연구를 통해 얻어진 결과를 요약하면 다음과 같다.

(1) 서울지역 공동주택단지의 풍력발전시스템 적응가능성을 분석하기 위하여 주동의 충수에 따라 유형별로 분류하였으며, 기둥속도 3.5m/s, 반도 40%를 기준으로 분석한 결과 5층형주동단지의 경우 2.3,4월에 풍력발전시스템의 효율적이 나, 15층형주동단지의 경우 여름철을 제외한 시기에는 적응이 가능한 것으로 나타났다. 25층형주동단지의 경우 연중 풍력발전시스템의 가동에 적합한 속도의 변동율을 나타내어 풍력발전시스템의 적응이 효과적일 것으로 예측되었다.
(2) 서울지역의 공동주택단지 주동변 종속분석결과 적용이 가능한 시스템을 종속에 따라 고찰한 결과, 기동동속 3m/s, 블레이드길이 10m이하의 20kW급이하의 중소형시스템이 적용이 가능한 것으로 분석되었으며, 시스템이 건물에 미칠 수 있는 영향을 소음, 진동, 하중, 전파장해, 경관으로 나누어 고찰한 결과 선정된 20kW급이하의 시스템은 건물에도 영향을 미치지 않는 것으로 분석되어 시스템의 선정이 타당한 것으로 나타났다.

(3) 공동주택단지의 건축적 특성에 따른 풍력발전시스템의 배치계획을 입면상 배치와 평면상 배치계획으로 나누어 고찰하였다. 풍력발전시스템의 입면상 배치계획은 건물의 장단면비에 따라 다양한데 일반적인 주중형태로서 편복도형의 국 민주택규모 단위세대조합수에 따른 적정 Hub 높이를 산출하였다. 풍력발전시스템의 평면상 배치계획은 양배치와 평행배치로 나눌 수 있으며 양배치시 로터길이가 길어져 출력량에서 더 유리한 것으로 분석되었다.

(4) 공동주택단지내 풍력발전시스템의 적용가능성 검토를 바탕으로 공동주택단지내 풍력발전시스템의 설계 Process를 제안하였다. 이 Process는 공동주택단지의 건축적 특성과 풍력발전시스템의 시스템특성에 따라 각 단계별로 대장분석, 설계목표설정, 풍력발전시스템의 배치계획, 계획안 결정으로 나누어 위계를 분류 하여 순차적으로 제시한 것이다. 각 단계별로 건축적 특성과 시스템특성의 상호 관계를 고려하여 작성하였으며, 이를 사례분석을 통하여 검증하였다.

(5) 사례분석을 통해 공공전력부하중 단지내 외동부하, 계단등과 비상용도등 조명부하, 지하주차장 조명부하를 설계목표로 설정하여 적용한 결과, 외동부하와 계단등 및 비상용도등부하는 단지내 풍력발전으로 담당할 수 있으며, 지하주차장의 조명은 24시간 상시등등으로 그 전력소비량이 상당히 크게 분석되어 풍력발 전시스템의 적용시 Zone 1과 Zone 3의 경우 100% 해결가능하지만, Zone 2의 경 우 시스템간 이격거리로 고려한 최대전력생산량이 지하주차장 조명부하의 최대 71%만을 담당할 수 있는 것으로 분석되었다.

- 103 -
오늘날, 지구환경의 문제는 에너지절약의 문제나 환경보전의 문제에서 더 나아가 인류문명의 지속가능성에 대한 문제로 인식된다. 현재 풍력발전시스템에 대한 지속적인 연구개발로 효율이 향상되고 비용이 점감되어 전세계적으로 풍력발전 시스템의 보급이 계속 확대될 전망이며 그 적용가능성이 높게 평가된다. 따라서 풍력발전시스템과 같은 재생가능에너지원에 대한 정책적, 제도적 장치가 융합 되었을 때 그 활용성이 크게 확대될 수 있을것이다.
A B S T R A C T

A Study on the Application Strategies of Wind Power System in Apartment Complex

Kang, So-Yeon
Dept. of Architectural Engineering
The Graduate School
Chung-Ang University
Advised by prof. Rhee, Eon-Ku, Ph.D.

Recently, as the interest in environmental pollution increases by acknowledging interrelated energy and environment problem, the use of renewable energy is uprising. Among the renewable energy resources, Wind Energy has no environmental impact and use unlimited wind resource. It has been proved to be one of the most reliable and economic forms of renewable energies. In European countries, the expansion rate of this market is over 30% annually. However, in Korea, wind energy utilization is only at a rudimental stage with a few experimental projects. The speed of wind increases according to the height, and so does the potential of the wind energy utilization. Therefore, if applied to high-rise apartment complexes which are wide-spread in Korea, the possibility of utilizing wind power will be highly promising.

This study is aimed to suggest the application strategies of wind power in apartment complexes in Korea.

The result of this study can be summarized as follows.
(1) The study examines cumulative wind data for 11 years in Seoul area, and analyze them in terms of building height. The result of the study indicates that 5-storey apartment complex can hardly accommodate wind turbine at the rooftop, while 15-storey is capable of utilizing wind power except summer months. For 25-storey highrise complex, the potential of wind power utilization is the greatest and effective year-round.

(2) The result of applicable wind turbines indicays that 20kW-or-less mid-small turbines that has cut-in speed 3m/s, blade length 10m is applicable in Seoul Area. Wind turbines can affect the building in terms of ambient noise, vibration, loads, EMI and view. However, in case of 20kW-or-less turbines, these adverse effects proved not to be the use.

(3) The arrangement of wind turbines in apartment complex was analysed. The proper Hub height was calculated based on the number of residential units in a typical complex. Turbine’s plan arrangement planning is divided into two classes: parallel and staggered arrangement; and Staggered arrangement produces more output of power.

(4) This study suggests wind turbine’s design process based on the investigation of wind power application possibility in apartment complexes. This process consists of object analysis, design purpose setting, wind turbine’s arrangement planning and plan determination. This process is constructed considering architectural characteristic and turbine’s specification, and is validated with case study.

(5) A case study was conducted with the design goal of applying wind power to outdoor lamp, stair light lighting, underground parking lot lighting
loads in public electric power load. The outdoor lamp and stair light loads can fully met by wind power system. However, underground parking lot can partially be powered by wind power system.

Nowadays, Environmental problems are related to the sustainability issues. As the research for reducing capital cost and increasing efficiency of wind power system is very active in many countries, the application of the system is expected to be widespread. The speed of propagation will be even faster if systematic policies are well established.
감사의 글

지난 2년간은 제게 아주 특별한 시간이었습니다. 짧은 시간이었지만 저자신에게 많은 변화를 가져다 주었습니다. 이제 앞으로의 제 인생설계에 큰 부분을 차지하게 될것이라 생각합니다.

대학원 생활의 결실을 맺기까지 학문뿐만 아니라 생활에서도 모범을 보여주시고 제가 존경해야지 않는 이연구 교수님께 깊은 감사를 드립니다. 항상 짧은 열정을 보여주시는 이현호 교수님, 조교시절부터 언제나 잘 보살펴주신 박찬식 교수님, 그리고 학부때부터 많은 가르침을 주신 이명호 교수님, 정현수 교수님, 최윤경 교수님, 이정형 교수님, 이은택 교수님, 강재훈 교수님께 감사드립니다.

짧은 2년간의 대학원 생활로 우리 환경연구실 가족분들과 인연을 맺을수 있어 기쁩니다. 항상 옷을 맡아주신 대화는 송국섭 선배님, 논문의 처음부터 끝까지 세심히 신경써주신 박진철 선배님 그리고 연구실가족으로서의 모범을 보여주신 김남규 선배님, 김세훈 선배님, 이동주 선배님, 그리고 멀리 제주대에서 서울로 바빠 오가시며 깊은 관심과 배려를 해주신 나수연 박사님께 감사드립니다.

연구실에서 같이 동공동락했던 전성원 박사님, 이관호 선배님, 세심한 배려로 기운을 북돋아준 김기훈 선배님, 논문의 처음부터 끝까지 세심하게 신경써준 유형규 선배님, 많은 도움을 주신 환경연구실 선배님들, 후배님들께 감사드립니다.

같이 논문을 쓰면서 서로 협이 되어주었던 유재형, 경애에게 감사드리며, 가까이 한 지켜봐준 지웅오빠, 오랜기간 내외에서 있어준 현주, 멀리 미국에서 협을 보내준 승현이, 바쁜척만 하는 저를 이해해주고 지켜봐준 친구들과 우리 막가과 들에게도 감사의 마음을 전합니다.

끝으로, 언제나 사랑으로 저를 끝까지 믿고 뒷바라지해주신 아버지와 어머니, 그리고 제 남동생에게 깊은 감사의 마음을 전하며, 저의 미약한 결실을 바칩니다.

2002년 6월 강소연